Suppr超能文献

迈向预/益生菌和肠脑轴疾病相关知识图谱。

Towards a knowledge graph for pre-/probiotics and microbiota-gut-brain axis diseases.

机构信息

Department of Computer Science, Center for Integrative Bioinformatics, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands.

Knowledge Representation and Reasoning Group, Department of Computer Science, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands.

出版信息

Sci Rep. 2022 Nov 8;12(1):18977. doi: 10.1038/s41598-022-21735-x.

Abstract

Scientific publications present biological relationships but are structured for human reading, making it difficult to use this resource for semantic integration and querying. Existing databases, on the other hand, are well structured for automated analysis, but do not contain comprehensive biological knowledge. We devised an approach for constructing comprehensive knowledge graphs from these two types of resources and applied it to investigate relationships between pre-/probiotics and microbiota-gut-brain axis diseases. To this end, we created (i) a knowledge base, dubbed ppstatement, containing manually curated detailed annotations, and (ii) a knowledge base, called ppconcept, containing automatically annotated concepts. The resulting Pre-/Probiotics Knowledge Graph (PPKG) combines these two knowledge bases with three other public databases (i.e. MeSH, UMLS and SNOMED CT). To validate the performance of PPKG and to demonstrate the added value of integrating two knowledge bases, we created four biological query cases. The query cases demonstrate that we can retrieve co-occurring concepts of interest, and also that combining the two knowledge bases leads to more comprehensive query results than utilizing them separately. The PPKG enables users to pose research queries such as "which pre-/probiotics combinations may benefit depression?", potentially leading to novel biological insights.

摘要

科学出版物呈现了生物学关系,但它们的结构是为人类阅读而设计的,因此难以将其用作语义集成和查询的资源。另一方面,现有的数据库结构良好,适合自动化分析,但不包含全面的生物学知识。我们设计了一种从这两种类型的资源构建综合知识图谱的方法,并将其应用于研究预/益生菌与肠脑轴疾病之间的关系。为此,我们创建了 (i) 一个名为 ppstatement 的知识库,其中包含手动整理的详细注释,和 (ii) 一个名为 ppconcept 的知识库,其中包含自动注释的概念。由此产生的预/益生菌知识图谱 (PPKG) 将这两个知识库与另外三个公共数据库(即 MeSH、UMLS 和 SNOMED CT)结合在一起。为了验证 PPKG 的性能,并展示整合两个知识库的附加值,我们创建了四个生物学查询案例。查询案例表明,我们可以检索到相关的共同出现的概念,并且将两个知识库结合起来比单独使用它们会产生更全面的查询结果。PPKG 使用户能够提出研究查询,例如“哪些预/益生菌组合可能有益于抑郁症?”,这可能会带来新的生物学见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd7f/9643397/5ba849d395ef/41598_2022_21735_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验