Suppr超能文献

正电子射程对 PET 分辨率的影响,通过常规和非常规放射性核素的体模和 PHITS 蒙特卡罗模拟进行评估。

The Impact of Positron Range on PET Resolution, Evaluated with Phantoms and PHITS Monte Carlo Simulations for Conventional and Non-conventional Radionuclides.

机构信息

Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

出版信息

Mol Imaging Biol. 2020 Feb;22(1):73-84. doi: 10.1007/s11307-019-01337-2.

Abstract

PURPOSE

The increasing interest and availability of non-standard positron-emitting radionuclides has heightened the relevance of radionuclide choice in the development and optimization of new positron emission tomography (PET) imaging procedures, both in preclinical research and clinical practice. Differences in achievable resolution arising from positron range can largely influence application suitability of each radionuclide, especially in small-ring preclinical PET where system blurring factors due to annihilation photon acollinearity and detector geometry are less significant. Some resolution degradation can be mitigated with appropriate range corrections implemented during image reconstruction, the quality of which is contingent on an accurate characterization of positron range.

PROCEDURES

To address this need, we have characterized the positron range of several standard and non-standard PET radionuclides (As-72, F-18, Ga-68, Mn-52, Y-86, and Zr-89) through imaging of small-animal quality control phantoms on a benchmark preclinical PET scanner. Further, the Particle and Heavy Ion Transport code System (PHITS v3.02) code was utilized for Monte Carlo modeling of positron range-dependent blurring effects.

RESULTS

Positron range kernels for each radionuclide were derived from simulation of point sources in ICRP reference tissues. PET resolution and quantitative accuracy afforded by various radionuclides in practicable imaging scenarios were characterized using a convolution-based method based on positron annihilation distributions obtained from PHITS. Our imaging and simulation results demonstrate the degradation of small animal PET resolution, and quantitative accuracy correlates with increasing positron energy; however, for a specific "benchmark" preclinical PET scanner and reconstruction workflow, these differences were observed to be minimal given radionuclides with average positron energies below ~ 400 keV.

CONCLUSION

Our measurements and simulations of the influence of positron range on PET resolution compare well with previous efforts documented in the literature and provide new data for several radionuclides in increasing clinical and preclinical use. The results will support current and future improvements in methods for positron range corrections in PET imaging.

摘要

目的

随着非标准正电子放射性核素的兴趣和可用性不断增加,在临床前研究和临床实践中,新型正电子发射断层扫描(PET)成像程序的开发和优化中,放射性核素的选择变得更加重要。正电子射程引起的可实现分辨率差异在很大程度上影响每个放射性核素的应用适用性,特别是在小环临床前 PET 中,由于湮没光子准直性和探测器几何形状引起的系统模糊因素不太重要。通过在图像重建过程中实施适当的射程校正,可以减轻一些分辨率下降,其质量取决于对正电子射程的准确描述。

过程

为了满足这一需求,我们使用基准临床前 PET 扫描仪对小动物质量控制体模进行成像,对几种标准和非标准 PET 放射性核素(As-72、F-18、Ga-68、Mn-52、Y-86 和 Zr-89)的正电子射程进行了表征。此外,利用粒子和重离子传输码系统(PHITS v3.02)代码对正电子射程相关模糊效应进行了蒙特卡罗建模。

结果

从 ICRP 参考组织中的点源模拟中得出了每种放射性核素的正电子射程核。使用基于 PHITS 获得的正电子湮没分布的卷积方法,对各种放射性核素在实际成像情况下的 PET 分辨率和定量准确性进行了描述。我们的成像和模拟结果表明,随着正电子能量的增加,小动物 PET 分辨率降低,定量准确性降低;然而,对于特定的“基准”临床前 PET 扫描仪和重建工作流程,考虑到平均正电子能量低于约 400keV 的放射性核素,这些差异被认为是最小的。

结论

我们对正电子射程对 PET 分辨率影响的测量和模拟与文献中记录的先前工作非常吻合,并为越来越多的临床和临床前应用中的几种放射性核素提供了新的数据。这些结果将支持当前和未来在 PET 成像中进行正电子射程校正方法的改进。

相似文献

3
Effects of system geometry and other physical factors on photon sensitivity of high-resolution positron emission tomography.
Phys Med Biol. 2007 Jul 7;52(13):3753-72. doi: 10.1088/0031-9155/52/13/007. Epub 2007 May 29.
6
Monte Carlo simulation of PET and SPECT imaging of 90Y.
Med Phys. 2015 Apr;42(4):1926-35. doi: 10.1118/1.4915545.
7
A gate evaluation of the sources of error in quantitative Y PET.
Med Phys. 2016 Oct;43(10):5320-5329. doi: 10.1118/1.4961747.
9
Full modelling of the MOSAIC animal PET system based on the GATE Monte Carlo simulation code.
Phys Med Biol. 2007 Feb 7;52(3):563-76. doi: 10.1088/0031-9155/52/3/002. Epub 2007 Jan 5.
10
Effect of positron range on PET quantification in diseased and normal lungs.
Phys Med Biol. 2019 Oct 16;64(20):205010. doi: 10.1088/1361-6560/ab469d.

引用本文的文献

2
Multiplexed imaging of radionuclides.
Nat Biomed Eng. 2025 Jun 20. doi: 10.1038/s41551-025-01406-8.
3
Hypoxia Imaging in Lung Cancer: A PET-Based Narrative Review for Clinicians and Researchers.
Pharmaceuticals (Basel). 2025 Mar 25;18(4):459. doi: 10.3390/ph18040459.
4
Impact of tissue-independent positron range correction on [Ga]Ga-DOTATOC and [Ga]Ga-PSMA PET image reconstructions: a patient data study.
Eur J Nucl Med Mol Imaging. 2025 Jun;52(7):2538-2548. doi: 10.1007/s00259-024-07061-6. Epub 2025 Jan 29.
6
Combining PET and Compton imaging with edge-on CZT detectors for enhanced diagnostic capabilities.
Adv Radiother Nucl Med. 2024 Jun 28;2(2). doi: 10.36922/arnm.3330. Epub 2024 Jun 14.
8
Development of Mn Labeled Trastuzumab for Extended Time Point PET Imaging of HER2.
Mol Imaging Biol. 2024 Oct;26(5):858-868. doi: 10.1007/s11307-024-01948-4. Epub 2024 Aug 27.
9
Motion-correction strategies for enhancing whole-body PET imaging.
Front Nucl Med. 2024;4. doi: 10.3389/fnume.2024.1257880. Epub 2024 Feb 7.
10
Clinical use of [F]fluoro-ethyl-L-tyrosine PET co-registered with MRI for localizing prolactinoma remnants.
Pituitary. 2024 Oct;27(5):614-624. doi: 10.1007/s11102-024-01430-y. Epub 2024 Jul 23.

本文引用的文献

2
Implementation of tetrahedral-mesh geometry in Monte Carlo radiation transport code PHITS.
Phys Med Biol. 2017 Jun 21;62(12):4798-4810. doi: 10.1088/1361-6560/aa6b45. Epub 2017 Apr 4.
3
Biodistribution and PET Imaging of pharmacokinetics of manganese in mice using Manganese-52.
PLoS One. 2017 Mar 17;12(3):e0174351. doi: 10.1371/journal.pone.0174351. eCollection 2017.
4
Development of a novel linearly-filled Derenzo microPET phantom.
Am J Nucl Med Mol Imaging. 2016 Jul 6;6(3):199-204. eCollection 2016.
5
Positron range in tissue-equivalent materials: experimental microPET studies.
Phys Med Biol. 2016 Sep 7;61(17):6307-21. doi: 10.1088/0031-9155/61/17/6307. Epub 2016 Aug 5.
6
Trithiols and their arsenic compounds for potential use in diagnostic and therapeutic radiopharmaceuticals.
Nucl Med Biol. 2016 May;43(5):288-95. doi: 10.1016/j.nucmedbio.2016.01.005. Epub 2016 Feb 14.
7
Imaging quality of (44)Sc in comparison with five other PET radionuclides using Derenzo phantoms and preclinical PET.
Appl Radiat Isot. 2016 Apr;110:129-133. doi: 10.1016/j.apradiso.2016.01.006. Epub 2016 Jan 6.
8
Novel Preparation Methods of (52)Mn for ImmunoPET Imaging.
Bioconjug Chem. 2015 Oct 21;26(10):2118-24. doi: 10.1021/acs.bioconjchem.5b00414. Epub 2015 Sep 10.
9
A pretargeting system for tumor PET imaging and radioimmunotherapy.
Front Pharmacol. 2015 Mar 31;6:54. doi: 10.3389/fphar.2015.00054. eCollection 2015.
10
Positron range estimations with PeneloPET.
Phys Med Biol. 2013 Aug 7;58(15):5127-52. doi: 10.1088/0031-9155/58/15/5127. Epub 2013 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验