Suppr超能文献

利用深度学习方法识别漂浮的塑料海洋垃圾。

Identifying floating plastic marine debris using a deep learning approach.

机构信息

Marine & Carbon Lab, Department of Engineering, University of Nicosia, 46 Makedonitissas Avenue, CY-2417, Nicosia, Cyprus.

KIOS Research Center, University of Cyprus, CY-1678, Nicosia, Cyprus.

出版信息

Environ Sci Pollut Res Int. 2019 Jun;26(17):17091-17099. doi: 10.1007/s11356-019-05148-4. Epub 2019 Apr 18.

Abstract

Estimating the volume of macro-plastics which dot the world's oceans is one of the most pressing environmental concerns of our time. Prevailing methods for determining the amount of floating plastic debris, usually conducted manually, are time demanding and rather limited in coverage. With the aid of deep learning, herein, we propose a fast, scalable, and potentially cost-effective method for automatically identifying floating marine plastics. When trained on three categories of plastic marine litter, that is, bottles, buckets, and straws, the classifier was able to successfully recognize the preceding floating objects at a success rate of ≈ 86%. Apparently, the high level of accuracy and efficiency of the developed machine learning tool constitutes a leap towards unraveling the true scale of floating plastics.

摘要

估算散布于世界海洋中的大型塑料的数量是我们这个时代最紧迫的环境问题之一。目前常用的确定漂浮塑料碎片数量的方法通常是手动进行的,既费时又覆盖范围有限。在深度学习的帮助下,本文提出了一种快速、可扩展且具有成本效益的自动识别漂浮海洋塑料的方法。在对瓶、桶和吸管这三类海洋塑料垃圾进行训练后,该分类器能够以约 86%的成功率成功识别前面的漂浮物。显然,开发的机器学习工具的高精度和高效率是揭示漂浮塑料真实规模的一个飞跃。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验