Suppr超能文献

基于独立成分分析的高密度肌电图分解算法:上肢肌肉的实验评估。

Independent component analysis based algorithms for high-density electromyogram decomposition: Experimental evaluation of upper extremity muscles.

机构信息

Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, United States.

Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, United States.

出版信息

Comput Biol Med. 2019 May;108:42-48. doi: 10.1016/j.compbiomed.2019.03.009. Epub 2019 Mar 13.

Abstract

Motor unit firing activities can provide critical information regarding neural control of skeletal muscles. Extracting motor unit activities reliably from surface electromyogram (EMG) is still a challenge in signal processing. We quantified the performance of three different independent component analysis (ICA)-based decomposition algorithms (Infomax, FastICA and RobustICA) on high-density EMG signals, obtained from arm muscles (biceps brachii and extensor digitorum communis) at different contraction levels. The source separation outcomes were evaluated based on the degree of agreement in the discharge timings between different algorithms, and based on the number of common motor units identified concurrently by two algorithms. Two metrics, the separation index (silhouette distance or SIL) and the rate of agreement, were used to evaluate the decomposition accuracy. Our results revealed a high rate of agreement (80%-90%) between different algorithms, which was consistent across different contraction levels. The RobustICA tended to show a higher RoA with the other two algorithms (especially with Infomax), whereas FastICA and Infomax tended to yield a greater number of common MUs. Overall, through an experimental evaluation of the three algorithms, the outcomes provide information regarding the utility of these algorithms and the motor unit filter criteria involving EMG signals of upper extremity muscles.

摘要

运动单位放电活动可以提供有关骨骼肌神经控制的关键信息。从表面肌电图(EMG)中可靠地提取运动单位活动仍然是信号处理中的一个挑战。我们量化了三种不同的基于独立成分分析(ICA)的分解算法(Infomax、FastICA 和 RobustICA)在不同收缩水平下从手臂肌肉(肱二头肌和指伸肌)获得的高密度 EMG 信号上的性能。根据不同算法之间放电时间的一致性程度以及两个算法同时识别的共同运动单位数量,对源分离结果进行了评估。两个度量标准,分离指数(轮廓距离或 SIL)和一致性率,用于评估分解精度。我们的结果显示,不同算法之间具有很高的一致性(80%-90%),这在不同的收缩水平上是一致的。与其他两种算法相比,RobustICA 往往表现出更高的 RoA(尤其是与 Infomax 相比),而 FastICA 和 Infomax 往往会产生更多的共同 MU。总体而言,通过对三种算法的实验评估,结果提供了有关这些算法和涉及上肢肌肉 EMG 信号的运动单位滤波器标准的效用的信息。

相似文献

2
Independent component analysis based algorithms for high-density electromyogram decomposition: Systematic evaluation through simulation.
Comput Biol Med. 2019 Jun;109:171-181. doi: 10.1016/j.compbiomed.2019.04.033. Epub 2019 Apr 26.
3
Robust Independent Component Analysis based EMG decomposition - a comparison study.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-5. doi: 10.1109/EMBC40787.2023.10341096.
4
Two-Source Validation of Progressive FastICA Peel-Off for Automatic Surface EMG Decomposition in Human First Dorsal Interosseous Muscle.
Int J Neural Syst. 2018 Nov;28(9):1850019. doi: 10.1142/S0129065718500193. Epub 2018 Apr 24.
5
2CFastICA: A Novel Method for High Density Surface EMG Decomposition Based on Kernel Constrained FastICA and Correlation Constrained FastICA.
IEEE Trans Neural Syst Rehabil Eng. 2024;32:2177-2186. doi: 10.1109/TNSRE.2024.3398822. Epub 2024 Jun 17.
7
Automatic Multichannel Intramuscular Electromyogram Decomposition: Progressive FastICA Peel-Off and Performance Validation.
IEEE Trans Neural Syst Rehabil Eng. 2019 Jan;27(1):76-84. doi: 10.1109/TNSRE.2018.2882338. Epub 2018 Nov 20.
8
Automatic Implementation of Progressive FastICA Peel-Off for High Density Surface EMG Decomposition.
IEEE Trans Neural Syst Rehabil Eng. 2018 Jan;26(1):144-152. doi: 10.1109/TNSRE.2017.2759664. Epub 2017 Oct 4.
10
A Novel Framework Based on FastICA for High Density Surface EMG Decomposition.
IEEE Trans Neural Syst Rehabil Eng. 2016 Jan;24(1):117-27. doi: 10.1109/TNSRE.2015.2412038. Epub 2015 Mar 11.

引用本文的文献

1
Functional force stimulation alters motor neuron discharge patterns.
Front Neurosci. 2023 Dec 5;17:1293017. doi: 10.3389/fnins.2023.1293017. eCollection 2023.
2
A generic neural network model to estimate populational neural activity for robust neural decoding.
Comput Biol Med. 2022 May;144:105359. doi: 10.1016/j.compbiomed.2022.105359. Epub 2022 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验