Putra Septia Eka Marsha, Muttaqien Fahdzi, Hamamoto Yuji, Inagaki Kouji, Hamada Ikutaro, Morikawa Yoshitada
Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871, Japan.
J Chem Phys. 2019 Apr 21;150(15):154707. doi: 10.1063/1.5087420.
We present a density functional theory study on the adsorption and decomposition mechanisms of monomeric formic acid (HCOOH) on a Cu(111) surface. We used Perdew-Burke-Ernzerhof (PBE) functional, PBE with dispersion correction (PBE-D2), and van der Waals density functionals (vdW-DFs). We found that the adsorption energy of HCOOH by using the PBE functional is smaller than the experimental value, while the PBE-D2 and vdW-DFs give better agreement with experimental results. The activation energies of decomposition calculated by using PBE-D2 and vdW-DFs are lower compared with desorption energies, seemingly in contradiction with experimental findings at room temperature, in which no decomposition of HCOOH on Cu(111) is observed when the surface is exposed to the gas phase HCOOH. We performed the reaction rate analysis based on the first-principles calculations for desorption and decomposition processes to clarify this contradiction. We found that the desorption of monomeric HCOOH is faster than that of its decomposition rate at room temperature because of a much larger pre-exponential factor. Thus, no decomposition of monomeric HCOOH should take place at room temperature. Our analysis revealed the competition between desorption and decomposition processes of HCOOH.
我们展示了一项关于单体甲酸(HCOOH)在Cu(111)表面吸附和解离机制的密度泛函理论研究。我们使用了Perdew-Burke-Ernzerhof(PBE)泛函、带色散校正的PBE(PBE-D2)以及范德华密度泛函(vdW-DFs)。我们发现,使用PBE泛函计算得到的HCOOH吸附能小于实验值,而PBE-D2和vdW-DFs与实验结果吻合得更好。使用PBE-D2和vdW-DFs计算得到的解离活化能低于脱附能,这似乎与室温下的实验结果相矛盾,在室温下,当表面暴露于气相HCOOH时,未观察到HCOOH在Cu(111)上的解离。我们基于脱附和解离过程的第一性原理计算进行了反应速率分析,以阐明这一矛盾。我们发现,由于指前因子大得多,单体HCOOH在室温下的脱附速度比其解离速度快。因此,在室温下单体HCOOH不应发生解离。我们的分析揭示了HCOOH脱附和解离过程之间的竞争。