Dabaghmanesh Samira, Neyts Erik C, Partoens Bart
Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium.
Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
Phys Chem Chem Phys. 2016 Aug 17;18(33):23139-46. doi: 10.1039/c6cp00346j.
van der Waals (vdW) forces play an important role in the adsorption of molecules on the surface of solids. However, the choice of the most suitable vdW functional for different systems is an essential problem which must be addressed for different systems. The lack of a systematic study on the performance of the vdW functionals in the bulk and adsorption properties of metal-oxides motivated us to examine different vdW approaches and compute the bulk and molecular adsorption properties of α-Cr2O3, α-Fe2O3, and α-Al2O3. For the bulk properties, we compared our results for the heat of formation, cohesive energy, lattice parameters and bond distances between the different vdW functionals and available experimental data. Next we studied the adsorption of benzene and CH3 molecules on top of different oxide surfaces. We employed different approximations to exchange and correlation within DFT, namely, the Perdew-Burke-Ernzerhof (PBE) GGA, (PBE)+U, and vdW density functionals [DFT(vdW-DF/DF2/optPBE/optB86b/optB88)+U] as well as DFT-D2/D3(+U) methods of Grimme for the bulk calculations and optB86b-vdW(+U) and DFT-D2(+U) for the adsorption energy calculations. Our results highlight the importance of vdW interactions not only in the adsorption of molecules, but importantly also for the bulk properties. Although the vdW contribution in the adsorption of CH3 (as a chemisorption interaction) is less important compared to the adsorption of benzene (as a physisorption interaction), this contribution is not negligible. Also adsorption of benzene on ferryl/chromyl terminated surfaces shows an important chemisorption contribution in which the vdW interactions become less significant.
范德华(vdW)力在分子吸附于固体表面的过程中起着重要作用。然而,为不同体系选择最合适的范德华泛函是一个必须针对不同体系加以解决的关键问题。由于缺乏对范德华泛函在金属氧化物的体相和吸附性质方面性能的系统研究,我们开展了不同范德华方法的研究,并计算了α - Cr₂O₃、α - Fe₂O₃和α - Al₂O₃的体相和分子吸附性质。对于体相性质,我们将不同范德华泛函计算得到的生成热、内聚能、晶格参数和键长结果与现有的实验数据进行了比较。接下来,我们研究了苯和CH₃分子在不同氧化物表面的吸附情况。我们在密度泛函理论(DFT)中采用了不同的交换关联近似方法,即佩德韦 - 伯克 - 恩泽尔霍夫(PBE)广义梯度近似(GGA)、(PBE)+U以及范德华密度泛函[DFT(vdW - DF/DF2/optPBE/optB86b/optB88)+U],同时还采用了用于体相计算的Grimme的DFT - D2/D3(+U)方法以及用于吸附能计算的optB86b - vdW(+U)和DFT - D2(+U)方法。我们的结果突出了范德华相互作用不仅在分子吸附中,而且在体相性质方面的重要性。尽管与苯的吸附(作为物理吸附相互作用)相比,CH₃吸附中范德华贡献(作为化学吸附相互作用)的重要性较低,但这一贡献不可忽略。此外,苯在高价铁/高价铬端基表面的吸附显示出重要的化学吸附贡献,其中范德华相互作用变得不那么显著。