Suppr超能文献

成纤维细胞-心肌细胞相互作用在 HFpEF 和高血压性心脏病中心房功能障碍中的作用。

The role of fibroblast - Cardiomyocyte interaction for atrial dysfunction in HFpEF and hypertensive heart disease.

机构信息

Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany.

DZHK (German Centre for Cardiovascular Research), partner site Hamburg, Germany; Universitäres Herzzentrum Hamburg, Klinik für Allgemeine und Interventionelle Kardiologie, 20246 Hamburg, Germany.

出版信息

J Mol Cell Cardiol. 2019 Jun;131:53-65. doi: 10.1016/j.yjmcc.2019.04.016. Epub 2019 Apr 18.

Abstract

AIMS

Atrial contractile dysfunction is associated with increased mortality in heart failure (HF). We have shown previously that a metabolic syndrome-based model of HFpEF and a model of hypertensive heart disease (HHD) have impaired left atrial (LA) function in vivo (rat). In this study we postulate, that left atrial cardiomyocyte (CM) and cardiac fibroblast (CF) paracrine interaction related to the inositol 1,4,5-trisphosphate signalling cascade is pivotal for the manifestation of atrial mechanical dysfunction in HF and that quantitative atrial remodeling is highly disease-dependent.

METHODS AND RESULTS

Differential remodeling was observed in HHD and HFpEF as indicated by an increase of atrial size in vivo (HFpEF), unchanged fibrosis (HHD and HFpEF) and a decrease of CM size (HHD). Baseline contractile performance of rat CM in vitro was enhanced in HFpEF. Upon treatment with conditioned medium from their respective stretched CF (CM-SF), CM (at 21 weeks) of WT showed increased Ca transient (CaT) amplitudes related to the paracrine activity of the inotrope endothelin (ET-1) and inositol 1,4,5-trisphosphate induced Ca release. Concentration of ET-1 was increased in CM-SF and atrial tissue from WT as compared to HHD and HFpEF. In HHD, CM-SF had no relevant effect on CaT kinetics. However, in HFpEF, CM-SF increased diastolic Ca and slowed Ca removal, potentially contributing to an in-vivo decompensation. During disease progression (i.e. at 27 weeks), HFpEF displayed dysfunctional excitation-contraction-coupling (ECC) due to lower sarcoplasmic-reticulum Ca content unrelated to CF-CM interaction or ET-1, but associated with enhanced nuclear [Ca]. In human patients, tissue ET-1 was not related to the presence of arterial hypertension or obesity.

CONCLUSIONS

Atrial remodeling is a complex entity that is highly disease and stage dependent. The activity of fibrosis related to paracrine interaction (e.g. ET-1) might contribute to in vitro and in vivo atrial dysfunction. However, during later stages of disease, ECC is impaired unrelated to CF.

摘要

目的

心房收缩功能障碍与心力衰竭(HF)死亡率增加有关。我们之前已经表明,基于代谢综合征的 HFpEF 模型和高血压性心脏病(HHD)模型在体内(大鼠)存在左心房(LA)功能障碍。在这项研究中,我们假设,与三磷酸肌醇信号级联相关的左心房心肌细胞(CM)和心脏成纤维细胞(CF)旁分泌相互作用对于 HF 中心房机械功能障碍的表现至关重要,并且定量心房重构与疾病高度相关。

方法和结果

在 HHD 和 HFpEF 中观察到差异重塑,表现为体内心房大小增加(HFpEF)、纤维化不变(HHD 和 HFpEF)和 CM 大小减小(HHD)。在体外,HFpEF 大鼠 CM 的基础收缩性能增强。在用各自拉伸 CF(CM-SF)的条件培养基处理后,WT 的 CM(在 21 周时)表现出与旁分泌活性的肌醇 1,4,5-三磷酸诱导的 Ca 释放相关的 Ca 瞬变(CaT)幅度增加。与 HHD 和 HFpEF 相比,WT 的 CM-SF 和心房组织中的内皮素(ET-1)和肌醇 1,4,5-三磷酸诱导的 Ca 释放的旁分泌活性增加了 ET-1 的浓度。在 HHD 中,CM-SF 对 CaT 动力学没有明显影响。然而,在 HFpEF 中,CM-SF 增加了舒张 Ca 并减缓了 Ca 清除,这可能导致体内失代偿。在疾病进展期间(即 27 周时),HFpEF 由于与 CF-CM 相互作用或 ET-1 无关但与增强的核 [Ca] 相关的肌浆网 Ca 含量降低而表现出功能失调的兴奋-收缩偶联(ECC)。在人类患者中,组织 ET-1 与动脉高血压或肥胖无关。

结论

心房重构是一种复杂的实体,高度依赖于疾病和阶段。与旁分泌相互作用相关的纤维化活性(例如 ET-1)可能有助于体外和体内心房功能障碍。然而,在疾病的后期阶段,ECC 受损与 CF 无关。

相似文献

1
The role of fibroblast - Cardiomyocyte interaction for atrial dysfunction in HFpEF and hypertensive heart disease.
J Mol Cell Cardiol. 2019 Jun;131:53-65. doi: 10.1016/j.yjmcc.2019.04.016. Epub 2019 Apr 18.
2
Cellular mechanisms of metabolic syndrome-related atrial decompensation in a rat model of HFpEF.
J Mol Cell Cardiol. 2018 Feb;115:10-19. doi: 10.1016/j.yjmcc.2017.12.012. Epub 2017 Dec 28.
3
Inositol-1,4,5-trisphosphate induced Ca2+ release and excitation-contraction coupling in atrial myocytes from normal and failing hearts.
J Physiol. 2015 Mar 15;593(6):1459-77. doi: 10.1113/jphysiol.2014.283226. Epub 2014 Dec 22.
4
Left Atrial Remodeling and Atrioventricular Coupling in a Canine Model of Early Heart Failure With Preserved Ejection Fraction.
Circ Heart Fail. 2016 Oct;9(10). doi: 10.1161/CIRCHEARTFAILURE.115.003238. Epub 2016 Oct 10.
5
Dual SGLT-1 and SGLT-2 inhibition improves left atrial dysfunction in HFpEF.
Cardiovasc Diabetol. 2021 Jan 7;20(1):7. doi: 10.1186/s12933-020-01208-z.
6
Progressive impairment of atrial myocyte function during left ventricular hypertrophy and heart failure.
J Mol Cell Cardiol. 2018 Jan;114:253-263. doi: 10.1016/j.yjmcc.2017.11.020. Epub 2017 Dec 2.
7
Cellular contribution to left and right atrial dysfunction in chronic arterial hypertension in pigs.
ESC Heart Fail. 2021 Feb;8(1):151-161. doi: 10.1002/ehf2.13087. Epub 2020 Nov 29.
8
Effects of different exercise modalities on cardiac dysfunction in heart failure with preserved ejection fraction.
ESC Heart Fail. 2021 Jun;8(3):1806-1818. doi: 10.1002/ehf2.13308. Epub 2021 Mar 25.
10
Dyssynchronous calcium removal in heart failure-induced atrial remodeling.
Am J Physiol Heart Circ Physiol. 2016 Dec 1;311(6):H1352-H1359. doi: 10.1152/ajpheart.00375.2016. Epub 2016 Sep 30.

引用本文的文献

2
Metabolic remodelling in atrial fibrillation: manifestations, mechanisms and clinical implications.
Nat Rev Cardiol. 2024 Oct;21(10):682-700. doi: 10.1038/s41569-024-01038-6. Epub 2024 May 30.
3
Cardiac cell senescence: molecular mechanisms, key proteins and therapeutic targets.
Cell Death Discov. 2024 Feb 14;10(1):78. doi: 10.1038/s41420-023-01792-5.
5
Interaction effect of hypertension and obesity on left atrial phasic function: a three-dimensional echocardiography study.
Quant Imaging Med Surg. 2023 Jul 1;13(7):4463-4474. doi: 10.21037/qims-22-1381. Epub 2023 May 8.
6
Left Atrial Myocardium in Arterial Hypertension.
Cells. 2022 Oct 8;11(19):3157. doi: 10.3390/cells11193157.
7
Heart failure with preserved ejection fraction: An alternative paradigm to explain the clinical implications of atrial fibrillation.
Heart Rhythm O2. 2021 Dec 17;2(6Part B):771-783. doi: 10.1016/j.hroo.2021.09.015. eCollection 2021 Dec.
9
Implications of SGLT Inhibition on Redox Signalling in Atrial Fibrillation.
Int J Mol Sci. 2021 May 31;22(11):5937. doi: 10.3390/ijms22115937.
10
Right-ventricular dysfunction in HFpEF is linked to altered cardiomyocyte Ca homeostasis and myofilament sensitivity.
ESC Heart Fail. 2021 Aug;8(4):3130-3144. doi: 10.1002/ehf2.13419. Epub 2021 May 17.

本文引用的文献

1
Precursor proadrenomedullin influences cardiomyocyte survival and local inflammation related to myocardial infarction.
Proc Natl Acad Sci U S A. 2018 Sep 11;115(37):E8727-E8736. doi: 10.1073/pnas.1721635115. Epub 2018 Aug 30.
3
Extent and magnitude of low-voltage areas assessed by ultra-high-density electroanatomical mapping correlate with left atrial function.
Int J Cardiol. 2018 Dec 1;272:108-112. doi: 10.1016/j.ijcard.2018.07.048. Epub 2018 Jul 9.
4
Catheter Ablation for Atrial Fibrillation with Heart Failure.
N Engl J Med. 2018 Feb 1;378(5):417-427. doi: 10.1056/NEJMoa1707855.
5
Cellular mechanisms of metabolic syndrome-related atrial decompensation in a rat model of HFpEF.
J Mol Cell Cardiol. 2018 Feb;115:10-19. doi: 10.1016/j.yjmcc.2017.12.012. Epub 2017 Dec 28.
6
Progressive impairment of atrial myocyte function during left ventricular hypertrophy and heart failure.
J Mol Cell Cardiol. 2018 Jan;114:253-263. doi: 10.1016/j.yjmcc.2017.11.020. Epub 2017 Dec 2.
8
Mechanical regulation of cardiac fibroblast profibrotic phenotypes.
Mol Biol Cell. 2017 Jul 7;28(14):1871-1882. doi: 10.1091/mbc.E17-01-0014. Epub 2017 May 3.
10
EHRA/HRS/APHRS/SOLAECE expert consensus on Atrial cardiomyopathies: Definition, characterisation, and clinical implication.
J Arrhythm. 2016 Aug;32(4):247-78. doi: 10.1016/j.joa.2016.05.002. Epub 2016 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验