Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, 19104, United States; Cell and Molecular Biology Group, Biomedical Graduate Studies, Philadelphia, Pennsylvania, 19104, United States.
Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, 19104, United States.
DNA Repair (Amst). 2019 Jun;78:102-113. doi: 10.1016/j.dnarep.2019.04.005. Epub 2019 Apr 13.
Homologous recombination (HR)-based repair during DNA replication can apparently utilize several partially overlapping repair pathways in response to any given lesion. A key player in HR repair is the Sgs1-Top3-Rmi1 (STR) complex, which is critical for resolving X-shaped recombination intermediates formed following bypass of methyl methanesulfonate (MMS)-induced damage. STR mutants are also sensitive to the ribonucleotide reductase inhibitor, hydroxyurea (HU), but unlike MMS treatment, HU treatment is not accompanied by X-structure accumulation, and it is thus unclear how STR functions in this context. Here we provide evidence that HU-induced fork stalling enlists Top3 prior to recombination intermediate formation. The resistance of sgs1Δ mutants to HU is enhanced by the absence of the putative SUMO (Small Ubiquitin MOdifier)-targeted ubiquitin ligase, Uls1, and we demonstrate that Top3 is required for this enhanced resistance and for coordinated breaks and subsequent d-loop formation at forks stalled at the ribosomal DNA (rDNA) replication fork block (RFB). We also find that HU resistance depends on the catalytic activity of the E3 SUMO ligase, Mms21, and includes a rapid Rad51-dependent restart mechanism that is different from the slow Rad51-independent HR fork restart mechanism operative in sgs1Δ ULS1+ mutants. These data support a model in which repair of HU-induced damage in sgs1Δ mutants involves an error-prone break-induced replication pathway but, in the absence of Uls1, shifts to one that is higher-fidelity and involves the formation of Rad51-dependent d-loops.
同源重组(HR)修复可以利用几种部分重叠的修复途径来应对任何给定的损伤。HR 修复中的关键参与者是 Sgs1-Top3-Rmi1(STR)复合物,该复合物对于解决甲基甲磺酸(MMS)诱导的损伤绕过后形成的 X 形重组中间体至关重要。STR 突变体对核糖核苷酸还原酶抑制剂羟基脲(HU)也很敏感,但与 MMS 处理不同,HU 处理不会伴随着 X 结构的积累,因此不清楚 STR 在这种情况下如何发挥作用。在这里,我们提供的证据表明,HU 诱导的叉停顿在重组中间体形成之前招募 Top3。在不存在假定的 SUMO(小泛素修饰物)靶向泛素连接酶 Uls1 的情况下,sgs1Δ 突变体对 HU 的抗性增强,我们证明 Top3 是这种增强的抗性以及协调的断裂以及随后在核糖体 DNA(rDNA)复制叉阻滞处的叉停顿(RFB)形成的 d 环所必需的。我们还发现,HU 抗性依赖于 E3 SUMO 连接酶 Mms21 的催化活性,并且包括一种快速的 Rad51 依赖性重新启动机制,与在 sgs1Δ ULS1+ 突变体中起作用的缓慢的 Rad51 非依赖性 HR 叉重新启动机制不同。这些数据支持这样一种模型,即 sgs1Δ 突变体中 HU 诱导损伤的修复涉及易错的断裂诱导复制途径,但在没有 Uls1 的情况下,会转移到一种更保真度更高的途径,涉及形成 Rad51 依赖性 d 环。