Kramarz Karol, Mucha Seweryn, Litwin Ireneusz, Barg-Wojas Anna, Wysocki Robert, Dziadkowiec Dorota
Institute of Experimental Biology, Faculty of Biological Sciences, University of Wrocław, 50-383, Poland.
Faculty of Biotechnology, University of Wrocław, 50-383, Poland.
Genetics. 2017 May;206(1):513-525. doi: 10.1534/genetics.116.196568. Epub 2017 Mar 24.
DNA damage tolerance and homologous recombination pathways function to bypass replication-blocking lesions and ensure completion of DNA replication. However, inappropriate activation of these pathways may lead to increased mutagenesis or formation of deleterious recombination intermediates, often leading to cell death or cancer formation in higher organisms. Post-translational modifications of PCNA regulate the choice of repair pathways at replication forks. Its monoubiquitination favors translesion synthesis, while polyubiquitination stimulates template switching. Srs2 helicase binds to small ubiquitin-related modifier (SUMO)-modified PCNA to suppress a subset of Rad51-dependent homologous recombination. Conversely, SUMOylation of Srs2 attenuates its interaction with PCNA Sgs1 helicase and Mus81 endonuclease are crucial for disentanglement of repair intermediates at the replication fork. Deletion of both genes is lethal and can be rescued by inactivation of Rad51-dependent homologous recombination. Here we show that Uls1, a member of the Swi2/Snf2 family of ATPases and a SUMO-targeted ubiquitin ligase, physically interacts with both PCNA and Srs2, and promotes Srs2 binding to PCNA by downregulating Srs2-SUMO levels at replication forks. We also identify deletion of as a suppressor of Δ Δ synthetic lethality and hypothesize that Δ mutation results in a partial inactivation of the homologous recombination pathway, detrimental in cells devoid of both Sgs1 and Mus81 We thus propose that Uls1 contributes to the pathway where intermediates generated at replication forks are dismantled by Srs2 bound to SUMO-PCNA. Upon deletion, accumulating Srs2-SUMO-unable to bind PCNA-takes part in an alternative PCNA-independent recombination repair salvage pathway(s).
DNA损伤耐受和同源重组途径的作用是绕过复制阻断性损伤并确保DNA复制的完成。然而,这些途径的不适当激活可能导致诱变增加或有害重组中间体的形成,常常导致高等生物中的细胞死亡或癌症形成。增殖细胞核抗原(PCNA)的翻译后修饰调节复制叉处修复途径的选择。其单泛素化有利于跨损伤合成,而多泛素化则刺激模板转换。Srs2解旋酶与小泛素相关修饰物(SUMO)修饰的PCNA结合,以抑制Rad51依赖性同源重组的一个子集。相反,Srs2的SUMO化减弱其与PCNA的相互作用。Sgs1解旋酶和Mus81核酸内切酶对于复制叉处修复中间体的解缠结至关重要。两个基因的缺失是致死性的,并且可以通过Rad51依赖性同源重组的失活来挽救。在这里,我们表明,Uls1是ATP酶Swi2/Snf2家族成员和SUMO靶向泛素连接酶,它与PCNA和Srs2都发生物理相互作用,并通过下调复制叉处的Srs2-SUMO水平促进Srs2与PCNA的结合。我们还确定Δ的缺失是ΔΔ合成致死性的一个抑制因子,并假设Δ突变导致同源重组途径的部分失活,这在缺乏Sgs1和Mus81的细胞中是有害的。因此,我们提出Uls1有助于这样一种途径,即复制叉处产生的中间体被与SUMO-PCNA结合的Srs2拆解。在Δ缺失后,积累的无法与PCNA结合的Srs2-SUMO参与了一种替代的不依赖PCNA的重组修复挽救途径。