Centre for Oral, Clinical and Translational Sciences, King's College London Faculty of Dentistry, Oral & Craniofacial Sciences, UK.
Mechatronics Research Group, Engineering and the Environment, University of Southampton, UK.
Dent Mater. 2019 Jul;35(7):e140-e152. doi: 10.1016/j.dental.2019.04.003. Epub 2019 Apr 18.
To determine the detection threshold of non-contacting laser profilometry (NCLP) measuring surface form and surface roughness change in natural human enamel in vitro, characterise how ambient scanning thermal variation affects NCLP measurement, and calculate bulk enamel loss in natural human enamel.
NCLP repeatability and reproducibility accuracy was determined by consecutively scanning natural human enamel samples with/without sample repositioning. Ambient thermal variation and NCLP sensor displacement over short (30 s), medium (20 min), and long (2 h) scanning periods were evaluated for their standard deviation. Natural human enamel specimens (n = 12) were eroded using citric acid (0.3% w/w pH3.2) for 5, 10, and 15 min and characterised using surface profilometry, tandem scanning confocal microscopy (TSM), and optical coherence tomography (OCT).
Repeatability and reproducibility error of NCLP for surface form was 0.28 μm and 0.43 μm, and for surface roughness 0.07 μm and 0.08 μm. Ambient thermal variation resulted in NCLP sensor displacement of 0.56 μm and 1.05 μm over medium and long scanning periods. Wear scar depth (μm) was calculated between 0.72-1.61 at 5 min, 1.72-3.06 at 10 min, and 3.40-7.06 at 15 min. Mean (SD) surface roughness (μm) was 1.13 (0.13), 1.52 (0.23), 1.44 (0.19), and 1.43 (0.21) at baseline, 5, 10, and 15 min. Qualitative image analysis indicated erosive change at the surface level, progressing after increasing erosion time.
Minimum detectable limits for NCLP measuring surface form and surface roughness changes were characterised. Ambient thermal variation, subsequent sensor displacement, and its impact on NCLP performance were characterised. Dental erosion lesions in natural human enamel could be characterised using surface profilometry, surface roughness, OCT, and TSM. Step height formation could be calculated within NCLP and temperature operating limits using profile superimposition and profile subtraction techniques. Natural enamel samples can now be used in in-vitro studies to investigate the formation and development of early acid erosive tooth wear, as well as the assessment of methods for enamel lesion remineralisation and repair.
确定非接触式激光轮廓测量(NCLP)检测体外天然人牙釉质表面形态和表面粗糙度变化的检测阈值,描述环境扫描热变化如何影响 NCLP 测量,并计算天然人牙釉质的体部釉质丧失。
通过连续扫描具有/不具有样本重新定位的天然人牙釉质样本,确定 NCLP 的重复性和再现性精度。评估短(30 秒)、中(20 分钟)和长(2 小时)扫描周期内环境热变化和 NCLP 传感器位移的标准偏差。使用表面轮廓仪、串联扫描共聚焦显微镜(TSM)和光学相干断层扫描(OCT)对 12 个天然人牙釉质样本进行 5、10 和 15 分钟的柠檬酸(0.3%w/w pH3.2)侵蚀,并对其进行特征描述。
NCLP 表面形态的重复性和再现性误差分别为 0.28μm 和 0.43μm,表面粗糙度分别为 0.07μm 和 0.08μm。环境热变化导致 NCLP 传感器在中长扫描周期内的位移分别为 0.56μm 和 1.05μm。5 分钟时磨损痕迹深度(μm)为 0.72-1.61,10 分钟时为 1.72-3.06,15 分钟时为 3.40-7.06。基线、5、10 和 15 分钟时平均(SD)表面粗糙度(μm)分别为 1.13(0.13)、1.52(0.23)、1.44(0.19)和 1.43(0.21)。定性图像分析表明,表面水平的侵蚀变化在增加侵蚀时间后逐渐出现。
对 NCLP 测量表面形态和表面粗糙度变化的最小可检测限进行了特征描述。对环境热变化、随后的传感器位移及其对 NCLP 性能的影响进行了特征描述。使用表面轮廓仪、表面粗糙度、OCT 和 TSM 可以对天然人牙釉质的侵蚀病变进行特征描述。可以使用轮廓叠加和轮廓相减技术在 NCLP 和温度工作范围内计算台阶高度形成。现在可以使用天然牙釉质样本进行体外研究,以调查早期酸蚀性牙齿磨损的形成和发展,以及评估牙釉质病变再矿化和修复的方法。