Unidad Mixta de Investigación Mejora de la Calidad Agroalimentaria UJI-UPV. Department de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, Spain.
Unidad Mixta de Investigación Mejora de la Calidad Agroalimentaria UJI-UPV, COMAV, Universitat Politècnica de València, València, Spain.
J Sci Food Agric. 2019 Aug 30;99(11):5140-5148. doi: 10.1002/jsfa.9760. Epub 2019 May 24.
Tomato taste is defined by the accumulation of sugars and organic acids. Individual analyses of these compounds using high-performance liquid chromatography (HPLC) or capillary zone electrophoresis (CZE) are expensive, time-consuming and are not feasible for large number of samples, justifying the interest of spectroscopic methods such as Fourier-transform mid-infrared (FT-MIR). This work analyzed the performance of FT-MIR models to determine the accumulation of sugars and acids, considering the efficiency of models obtained with different ranges of variation.
FT-MIR spectra (five-bounce attenuated total reflectance, ATR) were used to obtain partial least squares (PLS) models to predict sugar and acid contents in specific sample sets representing different varietal types. A general model was also developed, obtaining R values for prediction higher than 0.84 for main components (soluble solids content, fructose, glucose, and citric acid). Root mean squared error of prediction (RMSEP) for these components were lower than 15% of the mean contents and lower than 6% of the highest contents. Even more, the model sensitivity and specificity for those variables with a 10% selection pressure was 100%. That means that all samples with the 10% highest content were correctly identified. The model was applied to an external assay and it exhibited, for main components, high sensitivities (> 70%) and specificities (> 96%). RMSEP values for main compounds were lower than 21% and 13% of the mean and maximum content respectively.
The models obtained confirm the effectiveness of FT-MIR models to select samples with high contents of taste-related compounds, even when the calibration has not been performed within the same assay. © 2019 Society of Chemical Industry.
番茄的味道取决于糖和有机酸的积累。使用高效液相色谱(HPLC)或毛细管区带电泳(CZE)对这些化合物进行单独分析既昂贵又耗时,并且不适用于大量样品,这证明了傅里叶变换中红外(FT-MIR)等光谱方法的有效性。这项工作分析了 FT-MIR 模型的性能,以确定糖和酸的积累,同时考虑了不同变化范围获得的模型的效率。
使用 FT-MIR 光谱(五次反射衰减全反射,ATR)获得偏最小二乘(PLS)模型,以预测代表不同品种类型的特定样本集中的糖和酸含量。还开发了一个通用模型,获得了针对主要成分(可溶性固形物含量、果糖、葡萄糖和柠檬酸)的预测 R 值高于 0.84。这些成分的预测均方根误差(RMSEP)低于平均值的 15%,低于最高值的 6%。此外,对于具有 10%选择压力的变量,模型的灵敏度和特异性为 100%。这意味着所有具有 10%最高含量的样本都被正确识别。该模型应用于外部测定,对于主要成分,其灵敏度(>70%)和特异性(>96%)都很高。主要化合物的 RMSEP 值分别低于平均值和最大值的 21%和 13%。
所获得的模型证实了 FT-MIR 模型用于选择与味道相关化合物含量高的样品的有效性,即使在没有在同一测定中进行校准的情况下也是如此。 © 2019 化学工业协会。