a Centre de Biophysique Moléculaire , UPR 4301 du CNRS, Orléans , France.
b Physiologie de la Reproduction et des Comportements , UMR 7247 INRA-CNRS, Nouzilly , France.
RNA Biol. 2019 Jul;16(7):879-889. doi: 10.1080/15476286.2019.1593745. Epub 2019 Apr 21.
Eukaryotic cells have evolved a nuclear quality control (QC) system to monitor the co-transcriptional mRNA processing and packaging reactions that lead to the formation of export-competent ribonucleoprotein particles (mRNPs). Aberrant mRNPs that fail to pass the QC steps are retained in the nucleus and eliminated by the exonuclease activity of Rrp6. It is still unclear how the surveillance system is precisely coordinated both physically and functionally with the transcription machinery to detect the faulty events that may arise at each step of transcript elongation and mRNP formation. To dissect the QC mechanism, we previously implemented a powerful assay based on global perturbation of mRNP biogenesis in yeast by the bacterial Rho helicase. By monitoring model genes, we have shown that the QC process is coordinated by Nrd1, a component of the NNS complex (Nrd1-Nab3-Sen1) involved in termination, processing and decay of ncRNAs which is recruited by the CTD of RNAP II. Here, we have extended our investigations by analyzing the QC behaviour over the whole yeast genome. We performed high-throughput RNA sequencing (RNA-seq) to survey a large collection of mRNPs whose biogenesis is affected by Rho action and which can be rescued upon Rrp6 depletion. This genome-wide perspective was extended by generating high-resolution binding landscapes (ChIP-seq) of QC components along the yeast chromosomes before and after perturbation of mRNP biogenesis. Our results show that perturbation of mRNP biogenesis redistributes the QC components over the genome with a significant hijacking of Nrd1 and Nab3 from genomic loci producing ncRNAs to Rho-affected protein-coding genes, triggering termination and processing defects of ncRNAs.
真核细胞进化出了核质量控制 (QC) 系统,以监测导致具有出口能力的核糖核蛋白颗粒 (mRNP) 形成的共转录 mRNA 加工和包装反应。未能通过 QC 步骤的异常 mRNP 被保留在核内,并被 Rrp6 的外切酶活性消除。目前尚不清楚监视系统如何在物理和功能上与转录机制精确协调,以检测在转录延伸和 mRNP 形成的每个步骤中可能出现的错误事件。为了解剖 QC 机制,我们之前实施了一种强大的测定法,该测定法通过细菌 Rho 解旋酶在酵母中对 mRNP 生物发生进行全局扰动。通过监测模型基因,我们表明 QC 过程由 Nrd1 协调,Nrd1 是参与非编码 RNA 的终止、加工和降解的 NNS 复合物 (Nrd1-Nab3-Sen1) 的一个组成部分,该复合物被 RNAP II 的 CTD 募集。在这里,我们通过分析整个酵母基因组的 QC 行为扩展了我们的研究。我们进行了高通量 RNA 测序 (RNA-seq),以调查大量的 mRNP,这些 mRNP 的生物发生受 Rho 作用的影响,并且可以在 Rrp6 耗尽时得到挽救。通过在扰动 mRNP 生物发生前后,在酵母染色体上生成 QC 成分的高分辨率结合图谱 (ChIP-seq),扩展了这种全基因组视角。我们的结果表明,mRNP 生物发生的扰动将 QC 成分重新分配到基因组上,Nrd1 和 Nab3 从产生非编码 RNA 的基因组位点显著劫持到受 Rho 影响的蛋白编码基因,触发非编码 RNA 的终止和加工缺陷。