Suppr超能文献

我们何时有能力检测空间点模式中的生物相互作用?

When do we have the power to detect biological interactions in spatial point patterns?

作者信息

Rajala Tuomas, Olhede Sofia Charlotta, Murrell David John

机构信息

Department of Statistical Science University College London London UK.

Centre for Biodiversity and Environment Research University College London London UK.

出版信息

J Ecol. 2019 Mar;107(2):711-721. doi: 10.1111/1365-2745.13080. Epub 2018 Oct 23.

Abstract

Uncovering the roles of biotic interactions in assembling and maintaining species-rich communities remains a major challenge in ecology. In plant communities, interactions between individuals of different species are expected to generate positive or negative spatial interspecific associations over short distances. Recent studies using individual-based point pattern datasets have concluded that (a) detectable interspecific interactions are generally rare, but (b) are most common in communities with fewer species; and (c) the most abundant species tend to have the highest frequency of interactions. However, it is unclear how the detection of spatial interactions may change with the abundances of each species, or the scale and intensity of interactions. We ask if statistical power is sufficient to explain all three key results.We use a simple two-species model, assuming no habitat associations, and where the abundances, scale and intensity of interactions are controlled to simulate point pattern data. In combination with an approximation to the variance of the spatial summary statistics that we sample, we investigate the power of current spatial point pattern methods to correctly reject the null model of pairwise species independence.We show the power to detect interactions is positively related to both the abundances of the species tested, and the intensity and scale of interactions, but negatively related to imbalance in abundances. Differences in detection power in combination with the abundance distributions found in natural communities are sufficient to explain all the three key empirical results, even if all pairwise interactions are identical. Critically, many hundreds of individuals of both species may be required to detect even intense interactions, implying current abundance thresholds for including species in the analyses are too low. The widespread failure to reject the null model of spatial interspecific independence could be due to low power of the tests rather than any key biological process. Since we do not model habitat associations, our results represent a first step in quantifying sample sizes required to make strong statements about the role of biotic interactions in diverse plant communities. However, power should be factored into analyses and considered when designing empirical studies.

摘要

揭示生物相互作用在物种丰富群落的组装和维持过程中的作用仍然是生态学中的一项重大挑战。在植物群落中,不同物种个体之间的相互作用预计会在短距离内产生正或负的空间种间关联。最近使用基于个体的点格局数据集的研究得出结论:(a) 可检测到的种间相互作用通常很少见,但 (b) 在物种较少的群落中最为常见;以及 (c) 最丰富的物种往往具有最高的相互作用频率。然而,尚不清楚空间相互作用的检测如何随每个物种的丰度、相互作用的尺度和强度而变化。我们探讨统计功效是否足以解释所有这三个关键结果。我们使用一个简单的两物种模型,假设不存在栖息地关联,并且相互作用的丰度、尺度和强度是可控的,以模拟点格局数据。结合我们所采样的空间汇总统计量方差的近似值,我们研究当前空间点格局方法正确拒绝成对物种独立性零模型的功效。我们表明,检测相互作用的功效与所测试物种的丰度、相互作用的强度和尺度呈正相关,但与丰度不平衡呈负相关。检测功效的差异与自然群落中发现的丰度分布相结合,足以解释所有这三个关键的实证结果,即使所有成对相互作用都是相同的。至关重要的是,可能需要数百个两个物种的个体才能检测到即使是强烈的相互作用,这意味着目前分析中纳入物种的丰度阈值过低。未能广泛拒绝空间种间独立性零模型可能是由于检验功效低,而非任何关键的生物学过程。由于我们没有对栖息地关联进行建模,我们的结果代表了量化样本量的第一步,以便有力地说明生物相互作用在多样植物群落中的作用。然而,在设计实证研究时,应将功效纳入分析并加以考虑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5134/6472561/5a53ad68f692/JEC-107-711-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验