Feng Xuelei, Liu Chuntao, Xie Feiqin, Lu Jian, Chiu Long S, Tintera George, Chen Baohua
Center for Climate Physics Institute for Basic Science Busan South Korea.
Pusan National University Busan South Korea.
Q J R Meteorol Soc. 2019 Jan;145(718):303-317. doi: 10.1002/qj.3432. Epub 2019 Jan 9.
Changes in precipitation amount, intensity and frequency in response to global warming are examined using global high-resolution (16 km) climate model simulations based on the European Centre for Medium-range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) conducted under Project Athena. Our study shows the increases of zonal-mean total precipitation in all latitudes except the northern subtropics (15°-30°N) and southern subtropics-to-midlatitudes (30°-40°S). The probability distribution function (PDF) changes in different latitudes suggest a higher occurrence of light precipitation (LP; ≤1 mm/day) and heavy precipitation (HP; ≥30 mm/day) at the expense of moderate precipitation reduction (MP; 1-30 mm/day) from Tropics to midlatitudes, but an increase in all categories of precipitation in polar regions. On the other hand, the PDF change with global warming in different precipitation climatological zones presents another image. For all regions and seasons examined, there is an HP increase at the cost of MP, but LP varies. The reduced MP in richer precipitation zones resides in the PDF peak intensities, which linearly increase with the precipitation climatology zones. In particular in the Tropics (20°S to 20°N), the precipitation PDF has a flatter distribution (i.e. HP and LP increases with MP reduction) except for the Sahara Desert. In the primary precipitation zones in the subtropics (20°-40°) of both hemispheres, precipitation over land switches toward higher intensity (HP increases, but MP and LP decrease) in both winter and summer, while precipitation over ocean in both seasons shows a flattening trend in the intensity distribution. For the major precipitation zones of the mid-to-high latitude belt (40°-70°), PDF of precipitation tends to be flatter over ocean in summer, but switches toward higher intensities over land in both summer and winter, as well as over ocean in winter.
利用基于欧洲中期天气预报中心(ECMWF)综合预报系统(IFS)的全球高分辨率(16公里)气候模型模拟,在雅典娜项目下进行了研究,以考察全球变暖对降水量、强度和频率的影响。我们的研究表明,除了北半球亚热带地区(北纬15°-30°)和南半球亚热带至中纬度地区(南纬30°-40°)外,所有纬度的纬向平均总降水量都有所增加。不同纬度的概率分布函数(PDF)变化表明,从热带到中纬度,轻降水(LP;≤1毫米/天)和重降水(HP;≥30毫米/天)出现的概率更高,代价是中等降水量(MP;1-30毫米/天)减少,但极地地区各类降水量均增加。另一方面,不同降水气候区的PDF随全球变暖的变化呈现出另一番景象。对于所有考察的区域和季节,重降水增加,中等降水量减少,但轻降水变化情况各异。降水量丰富地区中等降水量的减少体现在PDF峰值强度上,峰值强度随降水气候区呈线性增加。特别是在热带地区(南纬20°至北纬20°),除撒哈拉沙漠外,降水PDF分布更为平坦(即重降水和轻降水随中等降水量减少而增加)。在南北半球亚热带地区(20°-40°)的主要降水区,陆地降水在冬季和夏季均向更高强度转变(重降水增加,中等降水量和轻降水减少),而海洋降水在两个季节的强度分布均呈现出变平的趋势。对于中高纬度带(40°-70°)的主要降水区,夏季海洋上降水的PDF趋于更平坦,但在夏季和冬季陆地以及冬季海洋上,降水PDF则转向更高强度。