Suppr超能文献

三维打印抗菌及显影性结构

Three-Dimensional Printing Antimicrobial and Radiopaque Constructs.

作者信息

Boyer Christen J, Ballard David H, Weisman Jeffery A, Hurst Spencer, McGee David J, Mills David K, Woerner Jennifer E, Jammalamadaka Uday, Tappa Karthik, Alexander J Steven

机构信息

Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana.

Department of Oral and Maxillofacial Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana.

出版信息

3D Print Addit Manuf. 2018 Mar;5(1):29-35. doi: 10.1089/3dp.2017.0099. Epub 2018 Mar 1.

Abstract

Three-dimensional (3D) printing holds tremendous potential as a tool for patient-specific devices. This proof-of- concept study demonstrated the feasibility, antimicrobial properties, and computed tomography(CT) imaging characteristics of iodine/polyvinyl alcohol (PVA) 3D meshes and stents. Under scanning electron microscopy, cross-linked PVA displays smoother and more compacted filament arrangements. X-ray and transaxial CT images of iodized PVA vascular stents show excellent visibility and significantly higher Hounsfield units of radiopacity than control prints. Three-dimensional PVA prints stabilized by glutaraldehyde cross-linking and loaded with iodine through sublimation significantly suppressed Escherichia coli and Staphylococcus aureus growth in human blood agar disk diffusion assays. It is suggested that PVA 3D printing with iodine represents an important new synthetic platform for generating a wide variety of antimicrobial and high-visibility devices.

摘要

三维(3D)打印作为一种制造个性化医疗设备的工具具有巨大潜力。这项概念验证研究展示了碘/聚乙烯醇(PVA)3D网格和支架的可行性、抗菌性能以及计算机断层扫描(CT)成像特征。在扫描电子显微镜下,交联的PVA显示出更光滑、更紧密的细丝排列。碘化PVA血管支架的X射线和横断面CT图像显示出极佳的可视性,并且其射线不透性的亨氏单位显著高于对照打印件。通过戊二醛交联稳定并通过升华加载碘的三维PVA打印件在人血琼脂平板扩散试验中显著抑制了大肠杆菌和金黄色葡萄球菌的生长。研究表明,含碘的PVA 3D打印代表了一个重要的新型合成平台,可用于制造各种抗菌且具有高可视性的设备。

相似文献

1
Three-Dimensional Printing Antimicrobial and Radiopaque Constructs.
3D Print Addit Manuf. 2018 Mar;5(1):29-35. doi: 10.1089/3dp.2017.0099. Epub 2018 Mar 1.
3
Assessment and selection of filler compounds for radiopaque PolyJet multi-material 3D printing for use in clinical settings.
Proc Inst Mech Eng H. 2022 May;236(5):740-747. doi: 10.1177/09544119221084819. Epub 2022 Mar 16.
4
Radiopaque Three-dimensional Printing: A Method to Create Realistic CT Phantoms.
Radiology. 2017 Feb;282(2):569-575. doi: 10.1148/radiol.2016152710. Epub 2016 Sep 14.
5
Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing.
Eur J Pharm Sci. 2015 Feb 20;68:11-7. doi: 10.1016/j.ejps.2014.11.009. Epub 2014 Nov 25.
6
Three-dimensional printing CT-derived objects with controllable radiopacity.
J Appl Clin Med Phys. 2018 Mar;19(2):317-328. doi: 10.1002/acm2.12278. Epub 2018 Feb 7.
7
3D Printing for Bio-Synthetic Biliary Stents.
Bioengineering (Basel). 2019 Feb 9;6(1):16. doi: 10.3390/bioengineering6010016.
9
3D Printing Factors Important for the Fabrication of Polyvinylalcohol Filament-Based Tablets.
Biol Pharm Bull. 2017;40(3):357-364. doi: 10.1248/bpb.b16-00878.
10
Fused-filament 3D printing (3DP) for fabrication of tablets.
Int J Pharm. 2014 Dec 10;476(1-2):88-92. doi: 10.1016/j.ijpharm.2014.09.044. Epub 2014 Sep 30.

引用本文的文献

2
A Radiopaque Nanoparticle-Based Ink Using PolyJet 3D Printing for Medical Applications.
3D Print Addit Manuf. 2020 Dec 1;7(6):259-268. doi: 10.1089/3dp.2019.0160. Epub 2020 Dec 16.
3
New -Generated Polymer-Iodine Complexes with Broad-Spectrum Antimicrobial Activity.
Microbiol Spectr. 2022 Oct 26;10(5):e0055022. doi: 10.1128/spectrum.00550-22. Epub 2022 Sep 20.
6
Antibiotics in 3D-printed implants, instruments and materials: benefits, challenges and future directions.
J 3D Print Med. 2019 Jun;3(2):83-93. doi: 10.2217/3dp-2019-0007. Epub 2019 May 31.
8
3D Printing for Bio-Synthetic Biliary Stents.
Bioengineering (Basel). 2019 Feb 9;6(1):16. doi: 10.3390/bioengineering6010016.
10
Three-Dimensional Printing of Cell Exclusion Spacers (CES) for Use in Motility Assays.
Pharm Res. 2018 Jun 4;35(8):155. doi: 10.1007/s11095-018-2431-4.

本文引用的文献

1
Additively manufactured medical products - the FDA perspective.
3D Print Med. 2016;2. doi: 10.1186/s41205-016-0005-9. Epub 2016 May 18.
2
Clinical Applications of 3D Printing: Primer for Radiologists.
Acad Radiol. 2018 Jan;25(1):52-65. doi: 10.1016/j.acra.2017.08.004. Epub 2017 Oct 10.
3
3D-printing techniques in a medical setting: a systematic literature review.
Biomed Eng Online. 2016 Oct 21;15(1):115. doi: 10.1186/s12938-016-0236-4.
4
Three-dimensional printing of bioactive hernia meshes: In vitro proof of principle.
Surgery. 2017 Jun;161(6):1479-1481. doi: 10.1016/j.surg.2016.08.033. Epub 2016 Oct 7.
6
Modulation, functionality, and cytocompatibility of three-dimensional printing materials made from chitosan-based polysaccharide composites.
Mater Sci Eng C Mater Biol Appl. 2016 Dec 1;69:27-36. doi: 10.1016/j.msec.2016.06.062. Epub 2016 Jun 21.
7
Advantages and disadvantages of 3-dimensional printing in surgery: A systematic review.
Surgery. 2016 Jun;159(6):1485-1500. doi: 10.1016/j.surg.2015.12.017. Epub 2016 Jan 30.
8
Three-Dimensional Printing and Medical Imaging: A Review of the Methods and Applications.
Curr Probl Diagn Radiol. 2016 Jan-Feb;45(1):2-9. doi: 10.1067/j.cpradiol.2015.07.009. Epub 2015 Jul 21.
10
Antibiotic and chemotherapeutic enhanced three-dimensional printer filaments and constructs for biomedical applications.
Int J Nanomedicine. 2015 Jan 9;10:357-70. doi: 10.2147/IJN.S74811. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验