Department of Psychology.
Center for Lifespan Psychology, Max Planck Institute for Human Development.
Psychol Methods. 2019 Aug;24(4):516-537. doi: 10.1037/met0000205. Epub 2019 Apr 22.
Continuous-time modeling offers a flexible approach to analyze longitudinal data from designs with unequally spaced measurement occasions. Measurement models are popular tools in psychological research to control for measurement error. The objective of the present article is to introduce the continuous-time Rasch model, a combination of the Rasch model and a continuous-time dynamic model. In a series of simulations we demonstrate the performance of the proposed model and that ignoring individual unequal time interval lengths, choosing a wrong measurement model, and selecting a wrong analysis strategy results in poor parameter estimates. The newly proposed continuous-time Rasch model overcomes these problems and offers a powerful new approach to longitudinal analysis with dichotomous items. A step-by-step tutorial on how to run a continuous-time Rasch model with the R package ctsem and an illustrative empirical example is given. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
连续时间建模为分析具有不等间隔测量时刻的设计的纵向数据提供了一种灵活的方法。测量模型是心理学研究中用于控制测量误差的常用工具。本文的目的是介绍连续时间 Rasch 模型,这是 Rasch 模型和连续时间动态模型的组合。在一系列模拟中,我们演示了所提出模型的性能,并且还证明了忽略个体不等时间间隔长度、选择错误的测量模型以及选择错误的分析策略会导致较差的参数估计。新提出的连续时间 Rasch 模型克服了这些问题,并为具有二分项目的纵向分析提供了一种强大的新方法。本文还提供了一个分步教程,介绍如何使用 R 包 ctsem 运行连续时间 Rasch 模型,并给出了一个说明性的实证示例。(PsycINFO 数据库记录(c)2019 APA,保留所有权利)。