Suppr超能文献

连续时间下的无监督模型构建

Unsupervised Model Construction in Continuous-Time.

作者信息

Park Jonathan J, Fisher Zachary F, Hunter Michael D, Shenk Chad, Russell Michael, Molenaar Peter C M, Chow Sy-Miin

机构信息

Department of Psychology, University of California, Davis.

Department of Human Development and Family Studies, The Pennsylvania State University.

出版信息

Struct Equ Modeling. 2025;32(3):377-399. doi: 10.1080/10705511.2024.2429544. Epub 2024 Dec 16.

Abstract

Many of the advancements reconciling individual- and group-level results have occurred in the context of a discrete-time modeling framework. Discrete-time models are intuitive and offer relatively simple interpretations for the resulting dynamic structures; however, they do not possess the flexibility of models fitted in the continuous-time framework. We introduce ct-gimme, a continuous-time extension of the group iterative multiple model estimation (GIMME; Gates & Molenaar, 2012) procedure which enables researchers to fit complex, high dimensional dynamic networks in continuous-time. Our results indicate that ct-gimme outperforms model fitting in continuous-time by pooling information across multiple subjects. Likewise, ct-gimme outperforms group-level model fitting in the presence of within-sample heterogeneity. We conclude with an empirical illustration and highlight limitations of the approach relating to identification of meaningful starting values.

摘要

许多协调个体层面和群体层面结果的进展都是在离散时间建模框架的背景下取得的。离散时间模型直观易懂,对由此产生的动态结构提供相对简单的解释;然而,它们不具备连续时间框架中拟合模型的灵活性。我们引入了ct-gimme,这是群体迭代多模型估计(GIMME;盖茨和莫伦纳尔,2012年)程序的连续时间扩展,它使研究人员能够在连续时间中拟合复杂的高维动态网络。我们的结果表明,ct-gimme通过汇总多个受试者的信息,在连续时间的模型拟合方面表现优于其他方法。同样,在存在样本内异质性的情况下,ct-gimme在群体层面的模型拟合方面也表现出色。我们最后进行了实证说明,并强调了该方法在确定有意义的初始值方面的局限性。

相似文献

1
Unsupervised Model Construction in Continuous-Time.连续时间下的无监督模型构建
Struct Equ Modeling. 2025;32(3):377-399. doi: 10.1080/10705511.2024.2429544. Epub 2024 Dec 16.
4
Network Mapping with GIMME.使用 GIMME 进行网络映射。
Multivariate Behav Res. 2017 Nov-Dec;52(6):789-804. doi: 10.1080/00273171.2017.1373014.
5
Evaluating Discrete Time Methods for Subgrouping Continuous Processes.评估用于连续过程分组的离散时间方法。
Multivariate Behav Res. 2024 Nov-Dec;59(6):1240-1252. doi: 10.1080/00273171.2023.2235685. Epub 2023 Aug 17.

本文引用的文献

2
Subgrouping with Chain Graphical VAR Models.基于链式图 VAR 模型的子群分组。
Multivariate Behav Res. 2024 May-Jun;59(3):543-565. doi: 10.1080/00273171.2023.2289058. Epub 2024 Feb 13.
3
State Space Mixture Modeling: Finding People with Similar Patterns of Change.状态空间混合模型:发现具有相似变化模式的人群。
Multivariate Behav Res. 2024 Nov-Dec;59(6):1253-1269. doi: 10.1080/00273171.2023.2261224. Epub 2023 Oct 10.
4
Evaluating Discrete Time Methods for Subgrouping Continuous Processes.评估用于连续过程分组的离散时间方法。
Multivariate Behav Res. 2024 Nov-Dec;59(6):1240-1252. doi: 10.1080/00273171.2023.2235685. Epub 2023 Aug 17.
5
Fitting Multilevel Vector Autoregressive Models in Stan, JAGS, and Mplus.在Stan、JAGS和Mplus中拟合多层向量自回归模型。
Struct Equ Modeling. 2022;29(3):452-475. doi: 10.1080/10705511.2021.1911657. Epub 2021 Sep 14.
10
Dynamic Mixture Modeling with .基于. 的动态混合建模
Multivariate Behav Res. 2021 Nov-Dec;56(6):941-955. doi: 10.1080/00273171.2020.1794775. Epub 2020 Aug 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验