Park Jonathan J, Fisher Zachary F, Hunter Michael D, Shenk Chad, Russell Michael, Molenaar Peter C M, Chow Sy-Miin
Department of Psychology, University of California, Davis.
Department of Human Development and Family Studies, The Pennsylvania State University.
Struct Equ Modeling. 2025;32(3):377-399. doi: 10.1080/10705511.2024.2429544. Epub 2024 Dec 16.
Many of the advancements reconciling individual- and group-level results have occurred in the context of a discrete-time modeling framework. Discrete-time models are intuitive and offer relatively simple interpretations for the resulting dynamic structures; however, they do not possess the flexibility of models fitted in the continuous-time framework. We introduce ct-gimme, a continuous-time extension of the group iterative multiple model estimation (GIMME; Gates & Molenaar, 2012) procedure which enables researchers to fit complex, high dimensional dynamic networks in continuous-time. Our results indicate that ct-gimme outperforms model fitting in continuous-time by pooling information across multiple subjects. Likewise, ct-gimme outperforms group-level model fitting in the presence of within-sample heterogeneity. We conclude with an empirical illustration and highlight limitations of the approach relating to identification of meaningful starting values.
许多协调个体层面和群体层面结果的进展都是在离散时间建模框架的背景下取得的。离散时间模型直观易懂,对由此产生的动态结构提供相对简单的解释;然而,它们不具备连续时间框架中拟合模型的灵活性。我们引入了ct-gimme,这是群体迭代多模型估计(GIMME;盖茨和莫伦纳尔,2012年)程序的连续时间扩展,它使研究人员能够在连续时间中拟合复杂的高维动态网络。我们的结果表明,ct-gimme通过汇总多个受试者的信息,在连续时间的模型拟合方面表现优于其他方法。同样,在存在样本内异质性的情况下,ct-gimme在群体层面的模型拟合方面也表现出色。我们最后进行了实证说明,并强调了该方法在确定有意义的初始值方面的局限性。