Suppr超能文献

变换域稀疏约束下的强度非均匀性的回顾性校正:在脑 MRI 中的应用。

Retrospective correction of intensity inhomogeneity with sparsity constraints in transform-domain: Application to brain MRI.

机构信息

School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.

出版信息

Magn Reson Imaging. 2019 Sep;61:207-223. doi: 10.1016/j.mri.2019.04.011. Epub 2019 Apr 19.

Abstract

An effective retrospective correction method is introduced in this paper for intensity inhomogeneity which is an inherent artifact in MR images. Intensity inhomogeneity problem is formulated as the decomposition of acquired image into true image and bias field which are expected to have sparse approximation in suitable transform domains based on their known properties. Piecewise constant nature of the true image lends itself to have a sparse approximation in framelet domain. While spatially smooth property of the bias field supports a sparse representation in Fourier domain. The algorithm attains optimal results by seeking the sparsest solutions for the unknown variables in the search space through L norm minimization. The objective function associated with defined problem is convex and is efficiently solved by the linearized alternating direction method. Thus, the method estimates the optimal true image and bias field simultaneously in an L norm minimization framework by promoting sparsity of the solutions in suitable transform domains. Furthermore, the methodology doesn't require any preprocessing, any predefined specifications or parametric models that are critically controlled by user-defined parameters. The qualitative and quantitative validation of the proposed methodology in simulated and real human brain MR images demonstrates the efficacy and superiority in performance compared to some of the distinguished algorithms for intensity inhomogeneity correction.

摘要

本文提出了一种有效的回顾性校正方法,用于校正磁共振图像中固有的强度不均匀性伪影。强度不均匀性问题被表述为将采集的图像分解为真实图像和偏置场,根据它们的已知特性,期望它们在适当的变换域中具有稀疏逼近。真实图像的分段常数性质使其在框架域中具有稀疏逼近。而偏置场的空间平滑性质则支持在傅里叶域中进行稀疏表示。该算法通过在搜索空间中通过 L 范数最小化寻找未知变量的最稀疏解来获得最佳结果。与定义的问题相关的目标函数是凸的,并通过线性交替方向法有效地求解。因此,该方法通过在适当的变换域中促进解的稀疏性,在 L 范数最小化框架中同时估计最优的真实图像和偏置场。此外,该方法不需要任何预处理、任何预定义的规范或参数模型,这些都由用户定义的参数严格控制。在模拟和真实人脑磁共振图像中的定性和定量验证表明,与一些用于强度不均匀性校正的杰出算法相比,该方法具有更好的性能和优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验