Suppr超能文献

基于区域的深度水平集方法在骨质疏松性骨折椎体骨分割中的应用。

A Region-Based Deep Level Set Formulation for Vertebral Bone Segmentation of Osteoporotic Fractures.

机构信息

Department of Robotics & Intelligent Machine Engineering, School of Mechanical & Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, Pakistan.

Department of Aerospace Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan.

出版信息

J Digit Imaging. 2020 Feb;33(1):191-203. doi: 10.1007/s10278-019-00216-0.

Abstract

Accurate segmentation of the vertebrae from medical images plays an important role in computer-aided diagnoses (CADs). It provides an initial and early diagnosis of various vertebral abnormalities to doctors and radiologists. Vertebrae segmentation is very important but difficult task in medical imaging due to low-contrast imaging and noise. It becomes more challenging when dealing with fractured (osteoporotic) cases. This work is dedicated to address the challenging problem of vertebra segmentation. In the past, various segmentation techniques of vertebrae have been proposed. Recently, deep learning techniques have been introduced in biomedical image processing for segmentation and characterization of several abnormalities. These techniques are becoming popular for segmentation purposes due to their robustness and accuracy. In this paper, we present a novel combination of traditional region-based level set with deep learning framework in order to predict shape of vertebral bones accurately; thus, it would be able to handle the fractured cases efficiently. We termed this novel Framework as "FU-Net" which is a powerful and practical framework to handle fractured vertebrae segmentation efficiently. The proposed method was successfully evaluated on two different challenging datasets: (1) 20 CT scans, 15 healthy cases, and 5 fractured cases provided at spine segmentation challenge CSI 2014; (2) 25 CT image data (both healthy and fractured cases) provided at spine segmentation challenge CSI 2016 or xVertSeg.v1 challenge. We have achieved promising results on our proposed technique especially on fractured cases. Dice score was found to be 96.4 ± 0.8% without fractured cases and 92.8 ± 1.9% with fractured cases in CSI 2014 dataset (lumber and thoracic). Similarly, dice score was 95.2 ± 1.9% on 15 CT dataset (with given ground truths) and 95.4 ± 2.1% on total 25 CT dataset for CSI 2016 datasets (with 10 annotated CT datasets). The proposed technique outperformed other state-of-the-art techniques and handled the fractured cases for the first time efficiently.

摘要

从医学图像中准确地分割出脊椎在计算机辅助诊断(CAD)中起着重要的作用。它为医生和放射科医生提供了各种脊椎异常的初步和早期诊断。由于成像对比度低和存在噪声,脊椎分割是医学成像中一项非常重要但又极具挑战性的任务。当处理骨折(骨质疏松)病例时,这个问题会变得更加具有挑战性。本工作致力于解决脊椎分割的这个极具挑战性的问题。过去已经提出了各种脊椎分割技术。最近,深度学习技术已被引入生物医学图像处理中,用于分割和特征描述几种异常情况。由于其鲁棒性和准确性,这些技术在分割任务中变得越来越流行。在本文中,我们提出了一种新颖的传统基于区域的水平集与深度学习框架的组合,以便准确地预测脊椎骨的形状;从而能够有效地处理骨折病例。我们将这个新颖的框架命名为“FU-Net”,这是一个强大且实用的框架,能够有效地处理骨折的脊椎分割。该方法在两个不同的挑战性数据集上进行了成功的评估:(1)20 个 CT 扫描,15 个健康病例和 5 个骨折病例,这些病例是在 2014 年脊椎分割挑战赛 CSI 中提供的;(2)25 个 CT 图像数据(包括健康和骨折病例),这些数据是在 2016 年脊椎分割挑战赛 CSI 或 xVertSeg.v1 挑战赛中提供的。我们在提出的技术上取得了有前景的结果,尤其是在骨折病例上。在 CSI 2014 数据集(腰椎和胸椎)中,无骨折病例的 Dice 评分达到 96.4±0.8%,有骨折病例的 Dice 评分达到 92.8±1.9%。同样,在 CSI 2016 数据集(有 10 个标注 CT 数据集)上,在 15 个 CT 数据集(带有给定的真实值)上的 Dice 评分达到 95.2±1.9%,在总共 25 个 CT 数据集上的 Dice 评分达到 95.4±2.1%。所提出的技术优于其他最先进的技术,并且首次有效地处理了骨折病例。

相似文献

1
A Region-Based Deep Level Set Formulation for Vertebral Bone Segmentation of Osteoporotic Fractures.
J Digit Imaging. 2020 Feb;33(1):191-203. doi: 10.1007/s10278-019-00216-0.
2
Automatic vertebrae localization and segmentation in CT with a two-stage Dense-U-Net.
Sci Rep. 2021 Nov 12;11(1):22156. doi: 10.1038/s41598-021-01296-1.
3
A multi-center milestone study of clinical vertebral CT segmentation.
Comput Med Imaging Graph. 2016 Apr;49:16-28. doi: 10.1016/j.compmedimag.2015.12.006. Epub 2016 Jan 2.
4
Iterative fully convolutional neural networks for automatic vertebra segmentation and identification.
Med Image Anal. 2019 Apr;53:142-155. doi: 10.1016/j.media.2019.02.005. Epub 2019 Feb 12.
5
Development of a deep learning model for detecting lumbar vertebral fractures on CT images: An external validation.
Eur J Radiol. 2024 Nov;180:111685. doi: 10.1016/j.ejrad.2024.111685. Epub 2024 Aug 15.
6
Chest CT-based automated vertebral fracture assessment using artificial intelligence and morphologic features.
Med Phys. 2024 Jun;51(6):4201-4218. doi: 10.1002/mp.17072. Epub 2024 May 9.
8
A Framework for Automated Spine and Vertebrae Interpolation-Based Detection and Model-Based Segmentation.
IEEE Trans Med Imaging. 2015 Aug;34(8):1649-62. doi: 10.1109/TMI.2015.2389334. Epub 2015 Jan 8.
9
Automatic detection and segmentation of lumbar vertebrae from X-ray images for compression fracture evaluation.
Comput Methods Programs Biomed. 2021 Mar;200:105833. doi: 10.1016/j.cmpb.2020.105833. Epub 2020 Nov 11.
10
Denoising diffusion-based MRI to CT image translation enables automated spinal segmentation.
Eur Radiol Exp. 2023 Nov 14;7(1):70. doi: 10.1186/s41747-023-00385-2.

引用本文的文献

3
A Classification Method for Thoracolumbar Vertebral Fractures due to Basketball Sports Injury Based on Deep Learning.
Comput Math Methods Med. 2022 Oct 5;2022:8747487. doi: 10.1155/2022/8747487. eCollection 2022.
4
Current development and prospects of deep learning in spine image analysis: a literature review.
Quant Imaging Med Surg. 2022 Jun;12(6):3454-3479. doi: 10.21037/qims-21-939.
6
A review on the application of deep learning for CT reconstruction, bone segmentation and surgical planning in oral and maxillofacial surgery.
Dentomaxillofac Radiol. 2022 Sep 1;51(7):20210437. doi: 10.1259/dmfr.20210437. Epub 2022 May 23.
8
Fast Segmentation of Vertebrae CT Image Based on the SNIC Algorithm.
Tomography. 2022 Jan 3;8(1):59-76. doi: 10.3390/tomography8010006.
9
Automatic vertebrae localization and segmentation in CT with a two-stage Dense-U-Net.
Sci Rep. 2021 Nov 12;11(1):22156. doi: 10.1038/s41598-021-01296-1.
10
Current Applications of Machine Learning in Spine: From Clinical View.
Global Spine J. 2022 Oct;12(8):1827-1840. doi: 10.1177/21925682211035363. Epub 2021 Oct 10.

本文引用的文献

1
Iterative fully convolutional neural networks for automatic vertebra segmentation and identification.
Med Image Anal. 2019 Apr;53:142-155. doi: 10.1016/j.media.2019.02.005. Epub 2019 Feb 12.
2
Automatic Lumbar MRI Detection and Identification Based on Deep Learning.
J Digit Imaging. 2019 Jun;32(3):513-520. doi: 10.1007/s10278-018-0130-7.
3
Medical Image Analysis using Convolutional Neural Networks: A Review.
J Med Syst. 2018 Oct 8;42(11):226. doi: 10.1007/s10916-018-1088-1.
4
Fully automatic cervical vertebrae segmentation framework for X-ray images.
Comput Methods Programs Biomed. 2018 Apr;157:95-111. doi: 10.1016/j.cmpb.2018.01.006. Epub 2018 Jan 12.
5
A survey on deep learning in medical image analysis.
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
6
Segmentation of Pathological Structures by Landmark-Assisted Deformable Models.
IEEE Trans Med Imaging. 2017 Jul;36(7):1457-1469. doi: 10.1109/TMI.2017.2667578. Epub 2017 Feb 13.
8
A multi-center milestone study of clinical vertebral CT segmentation.
Comput Med Imaging Graph. 2016 Apr;49:16-28. doi: 10.1016/j.compmedimag.2015.12.006. Epub 2016 Jan 2.
10
Imaging of vertebral fractures.
Indian J Endocrinol Metab. 2014 May;18(3):295-303. doi: 10.4103/2230-8210.131140.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验