Suppr超能文献

中程柔性对接:使用混合分辨率蒙特卡罗方法预测雌激素受体 α 的构象。

Middle-way flexible docking: Pose prediction using mixed-resolution Monte Carlo in estrogen receptor α.

机构信息

Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, United States of America.

Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, United States of America.

出版信息

PLoS One. 2019 Apr 23;14(4):e0215694. doi: 10.1371/journal.pone.0215694. eCollection 2019.

Abstract

There is a vast gulf between the two primary strategies for simulating protein-ligand interactions. Docking methods significantly limit or eliminate protein flexibility to gain great speed at the price of uncontrolled inaccuracy, whereas fully flexible atomistic molecular dynamics simulations are expensive and often suffer from limited sampling. We have developed a flexible docking approach geared especially for highly flexible or poorly resolved targets based on mixed-resolution Monte Carlo (MRMC), which is intended to offer a balance among speed, protein flexibility, and sampling power. The binding region of the protein is treated with a standard atomistic force field, while the remainder of the protein is modeled at the residue level with a Gō model that permits protein flexibility while saving computational cost. Implicit solvation is used. Here we assess three facets of the MRMC approach with implications for other docking studies: (i) the role of receptor flexibility in cross-docking pose prediction; (ii) the use of non-equilibrium candidate Monte Carlo (NCMC) and (iii) the use of pose-clustering in scoring. We examine 61 co-crystallized ligands of estrogen receptor α, an important cancer target known for its flexibility. We also compare the performance of the MRMC approach with Autodock smina. Adding protein flexibility, not surprisingly, leads to significantly lower total energies and stronger interactions between protein and ligand, but notably we document the important role of backbone flexibility in the improvement. The improved backbone flexibility also leads to improved performance relative to smina. Somewhat unexpectedly, our implementation of NCMC leads to only modestly improved sampling of ligand poses. Overall, the addition of protein flexibility improves the performance of docking, as measured by energy-ranked poses, but we do not find significant improvements based on cluster information or the use of NCMC. We discuss possible improvements for the model including alternative coarse-grained force fields, improvements to the treatment of solvation, and adding additional types of NCMC moves.

摘要

蛋白质-配体相互作用的两种主要模拟策略存在很大差异。对接方法极大地限制或消除了蛋白质的灵活性,以获得巨大的速度,但代价是不可控的不准确性,而完全灵活的原子分子动力学模拟则昂贵且经常受到采样限制。我们开发了一种灵活的对接方法,特别针对高度灵活或分辨率较差的靶标,基于混合分辨率蒙特卡罗(MRMC),旨在在速度、蛋白质灵活性和采样能力之间取得平衡。蛋白质的结合区域采用标准原子力场处理,而蛋白质的其余部分采用 Gō 模型在残基水平上建模,该模型允许蛋白质灵活性,同时节省计算成本。使用隐式溶剂化。在这里,我们评估了 MRMC 方法的三个方面,这些方面对其他对接研究具有重要意义:(i)受体灵活性在交叉对接构象预测中的作用;(ii)非平衡候选蒙特卡罗(NCMC)的使用和(iii)构象聚类在评分中的使用。我们研究了 61 个与雌激素受体 α 共结晶的配体,雌激素受体 α 是一种重要的癌症靶标,以其灵活性而闻名。我们还将 MRMC 方法与 Autodock smina 的性能进行了比较。毫不奇怪,增加蛋白质的灵活性会导致总能量显著降低,蛋白质与配体之间的相互作用更强,但值得注意的是,我们记录了骨架灵活性在改善中的重要作用。改进的骨架灵活性也导致与 smina 相比性能提高。有点出乎意料的是,我们实现的 NCMC 导致配体构象的采样略有改善。总体而言,如通过能量排序构象来衡量,增加蛋白质的灵活性可提高对接的性能,但我们没有发现基于聚类信息或使用 NCMC 的显著改进。我们讨论了模型的可能改进,包括替代的粗粒力场、改进溶剂化处理以及添加其他类型的 NCMC 移动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae34/6478315/4159d94e07d0/pone.0215694.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验