Department of Chemistry , University of California , Irvine , California 92697, United States.
Department of Pharmaceutical Sciences , University of California , Irvine , California 92697, United States.
J Phys Chem B. 2018 May 31;122(21):5579-5598. doi: 10.1021/acs.jpcb.7b11820. Epub 2018 Mar 12.
Accurately predicting protein-ligand binding affinities and binding modes is a major goal in computational chemistry, but even the prediction of ligand binding modes in proteins poses major challenges. Here, we focus on solving the binding mode prediction problem for rigid fragments. That is, we focus on computing the dominant placement, conformation, and orientations of a relatively rigid, fragment-like ligand in a receptor, and the populations of the multiple binding modes which may be relevant. This problem is important in its own right, but is even more timely given the recent success of alchemical free energy calculations. Alchemical calculations are increasingly used to predict binding free energies of ligands to receptors. However, the accuracy of these calculations is dependent on proper sampling of the relevant ligand binding modes. Unfortunately, ligand binding modes may often be uncertain, hard to predict, and/or slow to interconvert on simulation time scales, so proper sampling with current techniques can require prohibitively long simulations. We need new methods which dramatically improve sampling of ligand binding modes. Here, we develop and apply a nonequilibrium candidate Monte Carlo (NCMC) method to improve sampling of ligand binding modes. In this technique, the ligand is rotated and subsequently allowed to relax in its new position through alchemical perturbation before accepting or rejecting the rotation and relaxation as a nonequilibrium Monte Carlo move. When applied to a T4 lysozyme model binding system, this NCMC method shows over 2 orders of magnitude improvement in binding mode sampling efficiency compared to a brute force molecular dynamics simulation. This is a first step toward applying this methodology to pharmaceutically relevant binding of fragments and, eventually, drug-like molecules. We are making this approach available via our new Binding modes of ligands using enhanced sampling (BLUES) package which is freely available on GitHub.
准确预测蛋白质-配体结合亲和力和结合模式是计算化学的主要目标,但即使是预测蛋白质中的配体结合模式也存在重大挑战。在这里,我们专注于解决刚性片段的结合模式预测问题。也就是说,我们专注于计算相对刚性的片段样配体在受体中的主导位置、构象和取向,以及可能相关的多种结合模式的种群。这个问题本身很重要,但鉴于最近的自由能计算的成功,它变得更加及时。自由能计算越来越多地用于预测配体与受体的结合自由能。然而,这些计算的准确性取决于对相关配体结合模式的适当采样。不幸的是,配体结合模式可能经常不确定、难以预测和/或在模拟时间尺度上难以相互转换,因此使用当前技术进行适当采样可能需要 prohibitively long 模拟。我们需要新的方法来显著改善配体结合模式的采样。在这里,我们开发并应用了一种非平衡候选蒙特卡罗 (NCMC) 方法来改善配体结合模式的采样。在这种技术中,配体被旋转,然后通过阿尔克里自由能扰动使其在新位置松弛,然后接受或拒绝旋转和松弛作为非平衡蒙特卡罗移动。当应用于 T4 溶菌酶模型结合系统时,与蛮力分子动力学模拟相比,这种 NCMC 方法在结合模式采样效率方面提高了两个数量级。这是将这种方法应用于药物相关片段结合,最终是药物样分子的第一步。我们通过我们的新的 Binding modes of ligands using enhanced sampling (BLUES) 包来提供这种方法,该包可在 GitHub 上免费获得。