Suppr超能文献

相似文献

1
Modeling Protein Destiny in Developing Fruit.
Plant Physiol. 2019 Jul;180(3):1709-1724. doi: 10.1104/pp.19.00086. Epub 2019 Apr 23.
4
A tomato MADS-box transcription factor, SlMADS1, acts as a negative regulator of fruit ripening.
Plant Physiol. 2013 Oct;163(2):1026-36. doi: 10.1104/pp.113.224436. Epub 2013 Sep 4.
5
Noncoding RNAs: functional regulatory factors in tomato fruit ripening.
Theor Appl Genet. 2020 May;133(5):1753-1762. doi: 10.1007/s00122-020-03582-4. Epub 2020 Mar 24.
6
Overexpression of yeast spermidine synthase impacts ripening, senescence and decay symptoms in tomato.
Plant J. 2010 Sep;63(5):836-47. doi: 10.1111/j.1365-313X.2010.04286.x.
7
The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening.
Plant Cell. 2012 Nov;24(11):4437-51. doi: 10.1105/tpc.112.103283. Epub 2012 Nov 6.
9
Down-regulation of a single auxin efflux transport protein in tomato induces precocious fruit development.
J Exp Bot. 2012 Aug;63(13):4901-17. doi: 10.1093/jxb/ers167. Epub 2012 Jul 27.

引用本文的文献

1
Unlocking the potential of 'Egusi' melon ( L.) as a crop for biotechnological improvement.
Front Plant Sci. 2025 Mar 20;16:1547157. doi: 10.3389/fpls.2025.1547157. eCollection 2025.
4
Multi-regulated GDP-l-galactose phosphorylase calls the tune in ascorbate biosynthesis.
J Exp Bot. 2024 May 3;75(9):2631-2643. doi: 10.1093/jxb/erae032.
5
Quantitative Transcriptomic and Proteomic Analysis of Fruit Development and Ripening in Watermelon ().
Front Plant Sci. 2022 Mar 22;13:818392. doi: 10.3389/fpls.2022.818392. eCollection 2022.
7
Data integration uncovers the metabolic bases of phenotypic variation in yeast.
PLoS Comput Biol. 2021 Jul 15;17(7):e1009157. doi: 10.1371/journal.pcbi.1009157. eCollection 2021 Jul.
8
Fruit setting rewires central metabolism via gibberellin cascades.
Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23970-23981. doi: 10.1073/pnas.2011859117. Epub 2020 Sep 3.
9
Systematic Multi-Omics Integration (MOI) Approach in Plant Systems Biology.
Front Plant Sci. 2020 Jun 26;11:944. doi: 10.3389/fpls.2020.00944. eCollection 2020.
10
Systematic Review of Plant Ribosome Heterogeneity and Specialization.
Front Plant Sci. 2020 Jun 25;11:948. doi: 10.3389/fpls.2020.00948. eCollection 2020.

本文引用的文献

1
The role of active oxygen in the response of plants to water deficit and desiccation.
New Phytol. 1993 Sep;125(1):27-58. doi: 10.1111/j.1469-8137.1993.tb03863.x.
2
MapMan4: A Refined Protein Classification and Annotation Framework Applicable to Multi-Omics Data Analysis.
Mol Plant. 2019 Jun 3;12(6):879-892. doi: 10.1016/j.molp.2019.01.003. Epub 2019 Jan 9.
3
The PRIDE database and related tools and resources in 2019: improving support for quantification data.
Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450. doi: 10.1093/nar/gky1106.
4
Peptide filtering differently affects the performances of XIC-based quantification methods.
J Proteomics. 2019 Feb 20;193:131-141. doi: 10.1016/j.jprot.2018.10.003. Epub 2018 Oct 10.
6
Putting primary metabolism into perspective to obtain better fruits.
Ann Bot. 2018 Jun 28;122(1):1-21. doi: 10.1093/aob/mcy057.
7
The evolution, function and mechanisms of action for plant defensins.
Semin Cell Dev Biol. 2019 Apr;88:107-118. doi: 10.1016/j.semcdb.2018.02.004. Epub 2018 Feb 23.
8
Cross-species Comparison of Proteome Turnover Kinetics.
Mol Cell Proteomics. 2018 Apr;17(4):580-591. doi: 10.1074/mcp.RA117.000574. Epub 2018 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验