Suppr超能文献

用于高效吸附铀的磁性还原氧化石墨烯/茶渣复合材料的制备

Preparation of a magnetic reduced-graphene oxide/tea waste composite for high-efficiency sorption of uranium.

作者信息

Yang Aili, Zhu Yukuan, Li Ping, Huang C P

机构信息

Institute of Materials, China Academy of Engineering Physics, Jiangyou, 621907, China.

Department of Environmental Engineering, University of Delaware, Newark, DE, 19716, USA.

出版信息

Sci Rep. 2019 Apr 23;9(1):6471. doi: 10.1038/s41598-019-42697-7.

Abstract

The preparation and application of adsorptive materials with low cost and high-efficiency recovery of uranium from nuclear waste is necessary for the development of sustainable, clean energy resources and to avoid nuclear pollution. In this work, the capacity of tea waste and tea waste hybrids as inexpensive sorbents for uranium removal from water solutions was investigated. Composites of graphene oxide (GO) and tea waste (TW) exhibited a promising adsorption performance for uranium from aqueous solutions. The composites GOTW and magnetic rGO/FeO/TW show high adsorption capacities (Q = 91.72 mg/g, Q = 111.61 mg/g and Q = 104.95 mg/g) and removal rates (~99%) for U(VI). The equilibrium sorption of the adsorbents fitted well to the Langmuir model, and the sorption rate fitted well to a pseudo-second-order kinetic model. The thermodynamic parameters indicated that sorption was spontaneous and favourable. The prepared adsorbents were used for the removal of uranium from real water samples as well. The results revealed that GOTW and rGO/FeO/TW can be used to remediate nuclear industrial effluent as a potential adsorbent.

摘要

制备具有低成本和高效回收核废料中铀能力的吸附材料,对于可持续清洁能源资源的开发以及避免核污染是必要的。在这项工作中,研究了茶渣及其复合材料作为从水溶液中去除铀的廉价吸附剂的能力。氧化石墨烯(GO)与茶渣(TW)的复合材料对水溶液中的铀表现出有前景的吸附性能。复合材料GOTW和磁性rGO/FeO/TW对U(VI)显示出高吸附容量(Q = 91.72 mg/g、Q = 111.61 mg/g和Q = 104.95 mg/g)和去除率(~99%)。吸附剂的平衡吸附很好地符合朗缪尔模型,吸附速率很好地符合准二级动力学模型。热力学参数表明吸附是自发且有利的。所制备的吸附剂也用于从实际水样中去除铀。结果表明,GOTW和rGO/FeO/TW可作为潜在吸附剂用于修复核工业废水。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dec9/6478863/792cdc3979d4/41598_2019_42697_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验