Rubio-Giménez Víctor, Bartual-Murgui Carlos, Galbiati Marta, Núñez-López Alejandro, Castells-Gil Javier, Quinard Benoit, Seneor Pierre, Otero Edwige, Ohresser Philippe, Cantarero Andrés, Coronado Eugenio, Real José Antonio, Mattana Richard, Tatay Sergio, Martí-Gastaldo Carlos
Instituto de Ciencia Molecular , Universitat de València , Catedrático José Beltrán 2 , 46980 Paterna , Spain . Email:
Unité Mixte de Physique , CNRS , Thales , University Paris Sud , Université Paris-Saclay , 91767 Palaiseau , France.
Chem Sci. 2019 Feb 21;10(14):4038-4047. doi: 10.1039/c8sc04935a. eCollection 2019 Apr 14.
Mastering the nanostructuration of molecular materials onto solid surfaces and understanding how this process affects their properties are of utmost importance for their integration into solid-state electronic devices. This is even more important for spin crossover (SCO) systems, in which the spin transition is extremely sensitive to size reduction effects. These bi-stable materials have great potential for the development of nanotechnological applications provided their intrinsic properties can be successfully implemented in nanometric films, amenable to the fabrication of functional nanodevices. Here we report the fabrication of crystalline ultrathin films (<1-43 nm) of two-dimensional Hofmann-type coordination polymers by using an improved layer-by-layer strategy and a close examination of their SCO properties at the nanoscale. X-ray absorption spectroscopy data in combination with extensive atomic force microscopy analysis reveal critical dependence of the SCO transition on the number of layers and the microstructure of the films. This originates from the formation of segregated nanocrystals in early stages of the growth process that coalesce into a continuous film with an increasing number of growth cycles for an overall behaviour reminiscent of the bulk. As a result, the completeness of the high spin/low spin transition is dramatically hindered for films of less than 15 layers revealing serious limitations to the ultimate thickness that might be representative of the performance of the bulk when processing SCO materials as ultrathin films. This unprecedented exploration of the particularities of the growth of SCO thin films at the nanoscale should encourage researchers to put a spotlight on these issues when contemplating their integration into devices.
掌握分子材料在固体表面的纳米结构化,并理解这一过程如何影响其性能,对于将它们集成到固态电子器件中至关重要。对于自旋交叉(SCO)系统而言,这一点更为重要,因为在该系统中,自旋转变对尺寸减小效应极为敏感。如果这些双稳态材料的固有特性能够成功地应用于纳米薄膜中,适合制造功能性纳米器件,那么它们在纳米技术应用的发展中具有巨大潜力。在此,我们报告了通过使用改进的逐层策略制备二维霍夫曼型配位聚合物的结晶超薄膜(<1 - 43 nm),并在纳米尺度上仔细研究了它们的SCO特性。结合广泛的原子力显微镜分析的X射线吸收光谱数据揭示了SCO转变对薄膜层数和微观结构的关键依赖性。这源于在生长过程早期形成的分离纳米晶体,随着生长循环次数的增加,这些纳米晶体聚结成连续薄膜,其整体行为类似于块状材料。结果,对于少于15层的薄膜,高自旋/低自旋转变的完整性受到极大阻碍,这揭示了在将SCO材料加工成超薄膜时,可能代表块状材料性能的最终厚度存在严重限制。这种对SCO薄膜在纳米尺度上生长特性的前所未有的探索,应鼓励研究人员在考虑将其集成到器件中时关注这些问题。