Kavli Institute of Nanoscience, Delft University of Technology , Lorentzweg 1, 2628 CJ Delft, The Netherlands.
Instituto de Ciencia Molecular (ICMol), Universidad de Valencia , c/Catedrático José Beltrán, 2, 46980 Paterna, Spain.
Nano Lett. 2017 Jan 11;17(1):186-193. doi: 10.1021/acs.nanolett.6b03780. Epub 2016 Dec 7.
Future multifunctional hybrid devices might combine switchable molecules and 2D material-based devices. Spin-crossover compounds are of particular interest in this context since they exhibit bistability and memory effects at room temperature while responding to numerous external stimuli. Atomically thin 2D materials such as graphene attract a lot of attention for their fascinating electrical, optical, and mechanical properties, but also for their reliability for room-temperature operations. Here, we demonstrate that thermally induced spin-state switching of spin-crossover nanoparticle thin films can be monitored through the electrical transport properties of graphene lying underneath the films. Model calculations indicate that the charge carrier scattering mechanism in graphene is sensitive to the spin-state dependence of the relative dielectric constants of the spin-crossover nanoparticles. This graphene sensor approach can be applied to a wide class of (molecular) systems with tunable electronic polarizabilities.
未来的多功能混合设备可能会将可切换分子和基于 2D 材料的设备结合在一起。在这方面,自旋交叉化合物特别有趣,因为它们在室温下表现出双稳定性和记忆效应,同时对许多外部刺激做出响应。原子薄的 2D 材料,如石墨烯,因其迷人的电学、光学和机械性能而备受关注,但也因其在室温下运行的可靠性而备受关注。在这里,我们证明了自旋交叉纳米颗粒薄膜的热诱导自旋态切换可以通过位于薄膜下方的石墨烯的输运性质来监测。模型计算表明,石墨烯中的电荷载流子散射机制对自旋交叉纳米颗粒的相对介电常数的自旋态依赖性敏感。这种基于石墨烯的传感器方法可以应用于具有可调谐电子极化率的广泛的(分子)系统。