Suppr超能文献

微型电粒子袖口用于无线周边神经调节。

Miniature electroparticle-cuff for wireless peripheral neuromodulation.

机构信息

Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States of America. Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States of America.

出版信息

J Neural Eng. 2019 Aug;16(4):046002. doi: 10.1088/1741-2552/ab1c36. Epub 2019 Apr 24.

Abstract

OBJECTIVE

Recent developments in peripheral nerve electrodes allow the efficient and selective neuromodulation of somatic and autonomic nerves, which has proven beneficial in specific bioelectronic medical applications. However, current most clinical devices are wired and powered by implantable batteries which suffer from several limitations. We recently developed a sub-millimeter inductively powered neural stimulator (electroparticle; EP), and in this study, we report the integration of the EP onto commercial cuff electrodes (EP-C) allowing the wireless activation of peripheral nerves.

APPROACH

The current output of this device was defined at different magnetic field strenghts, and with respect to external antenna distance and activation angles. In acute in vivo testing, stimulation of the rat sciatic nerve (ScN) with the EP-C was able to evoke motor responses quantified by 3D tracking of the hind limb movement. Motor recruitment curves were obtained in response to variations in magnetic field strength (0-92.91 A m), stimulation frequencies (2-7 Hz), and pulse widths (50-200 µs).

MAIN RESULTS

The results show constant output voltage throughout 50 400 stimulating cycles on a benchtop setting, and successful ScN motor activation with a 4 cm distance between external antenna and receiver. We achieved optimal motor recruitment indicated by maximizing range of hindlimb movement (6.01  ±  2.92 mm) with a magnetic field of 40.02  ±  2.85 A m and 150 µs pulse width. Stimulating pulse width or frequency did not significantly influence motor recruitment.

SIGNIFICANCE

We confirmed that continuous stimulation for 14 min using monophasic pulses did not deleteriously affect the evoked motor responses when compared to wired charge-balanced biphasic electrical stimulation. We observed, however, a 36%-44% decrease in the evoked limb movement in both groups over time due to muscle fatigue. This study shows that the EP-C device can be used effectively for peripheral nerve neuromodulation.

摘要

目的

周围神经电极的最新发展允许对躯体和自主神经进行高效和选择性的神经调节,这在特定的生物电子医学应用中已被证明是有益的。然而,目前大多数临床设备都是通过植入式电池进行有线和供电的,这些电池存在多种局限性。我们最近开发了一种亚毫米级感应供电的神经刺激器(电粒子;EP),在本研究中,我们报告了将 EP 集成到商业袖口电极(EP-C)上,从而实现对周围神经的无线激活。

方法

该设备的电流输出在不同的磁场强度下进行了定义,并针对外部天线距离和激活角度进行了定义。在急性体内测试中,使用 EP-C 刺激大鼠坐骨神经(ScN)能够诱发通过后腿运动的 3D 跟踪来量化的运动反应。通过改变磁场强度(0-92.91 A m)、刺激频率(2-7 Hz)和脉冲宽度(50-200 μs)获得了运动募集曲线。

主要结果

结果表明,在台式设置下,经过 50400 个刺激循环后,输出电压保持恒定,并且在外天线和接收器之间距离为 4 cm 时,成功激活了 ScN 运动。我们通过最大程度地增加后腿运动范围(6.01 ± 2.92 mm)来实现最佳的运动募集,磁场为 40.02 ± 2.85 A m,脉冲宽度为 150 μs。刺激脉冲宽度或频率不会显著影响运动募集。

意义

我们证实,与有线平衡双相电刺激相比,使用单相脉冲连续刺激 14 分钟不会对诱发的运动反应产生有害影响。然而,我们观察到,由于肌肉疲劳,两组的诱发肢体运动在时间上均下降了 36%-44%。这项研究表明,EP-C 设备可有效用于周围神经神经调节。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验