Suppr超能文献

作曲者-患者结局的可视化队列分析。

Composer-Visual Cohort Analysis of Patient Outcomes.

机构信息

Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, United States.

Department of Orthopedics, University of Utah, Salt Lake City, Utah, United States.

出版信息

Appl Clin Inform. 2019 Mar;10(2):278-285. doi: 10.1055/s-0039-1687862. Epub 2019 Apr 24.

Abstract

OBJECTIVE

Visual cohort analysis utilizing electronic health record data has become an important tool in clinical assessment of patient outcomes. In this article, we introduce Composer, a visual analysis tool for orthopedic surgeons to compare changes in physical functions of a patient cohort following various spinal procedures. The goal of our project is to help researchers analyze outcomes of procedures and facilitate informed decision-making about treatment options between patient and clinician.

METHODS

In collaboration with orthopedic surgeons and researchers, we defined domain-specific user requirements to inform the design. We developed the tool in an iterative process with our collaborators to develop and refine functionality. With Composer, analysts can dynamically define a patient cohort using demographic information, clinical parameters, and events in patient medical histories and then analyze patient-reported outcome scores for the cohort over time, as well as compare it to other cohorts. Using Composer's current iteration, we provide a usage scenario for use of the tool in a clinical setting.

CONCLUSION

We have developed a prototype cohort analysis tool to help clinicians assess patient treatment options by analyzing prior cases with similar characteristics. Although Composer was designed using patient data specific to orthopedic research, we believe the tool is generalizable to other healthcare domains. A long-term goal for Composer is to develop the application into a shared decision-making tool that allows translation of comparison and analysis from a clinician-facing interface into visual representations to communicate treatment options to patients.

摘要

目的

利用电子健康记录数据进行可视化队列分析已成为临床评估患者结局的重要工具。本文介绍了 Composer,这是一种用于骨科医生的可视化分析工具,可比较不同脊柱手术后患者队列的身体功能变化。我们的项目目标是帮助研究人员分析手术结果,并在患者和临床医生之间就治疗选择做出明智决策。

方法

我们与骨科医生和研究人员合作,确定了特定于领域的用户需求,以提供设计信息。我们与合作者一起以迭代的方式开发了该工具,以开发和完善功能。使用 Composer,分析师可以使用人口统计学信息、临床参数以及患者病史中的事件动态定义患者队列,然后分析队列随时间的患者报告结局评分,并将其与其他队列进行比较。使用 Composer 的当前迭代,我们提供了在临床环境中使用该工具的使用场景。

结论

我们开发了一种原型队列分析工具,通过分析具有相似特征的先前病例,帮助临床医生评估患者的治疗选择。尽管 Composer 是使用特定于骨科研究的患者数据设计的,但我们相信该工具具有普遍性,可以应用于其他医疗保健领域。Composer 的长期目标是将该应用程序开发为一个共享决策工具,允许将比较和分析从面向临床医生的界面转换为可视化表示,以向患者传达治疗选择。

相似文献

1
Composer-Visual Cohort Analysis of Patient Outcomes.
Appl Clin Inform. 2019 Mar;10(2):278-285. doi: 10.1055/s-0039-1687862. Epub 2019 Apr 24.
2
VisualDecisionLinc: a visual analytics approach for comparative effectiveness-based clinical decision support in psychiatry.
J Biomed Inform. 2012 Feb;45(1):101-6. doi: 10.1016/j.jbi.2011.09.003. Epub 2011 Sep 20.
5
Development of a cognitive framework of patient record summary review in the formative phase of user-centered design.
J Biomed Inform. 2016 Dec;64:147-157. doi: 10.1016/j.jbi.2016.10.004. Epub 2016 Oct 8.
6
Assessment of a personalized and distributed patient guidance system.
Int J Med Inform. 2017 May;101:108-130. doi: 10.1016/j.ijmedinf.2017.02.010. Epub 2017 Feb 21.
7
Decision-Centered Design of Patient Information Visualizations to Support Chronic Pain Care.
Appl Clin Inform. 2019 Aug;10(4):719-728. doi: 10.1055/s-0039-1696668. Epub 2019 Sep 25.
9
Visually defining and querying consistent multi-granular clinical temporal abstractions.
Artif Intell Med. 2012 Feb;54(2):75-101. doi: 10.1016/j.artmed.2011.10.004. Epub 2011 Dec 15.
10
A method for cohort selection of cardiovascular disease records from an electronic health record system.
Int J Med Inform. 2017 Jun;102:138-149. doi: 10.1016/j.ijmedinf.2017.03.015. Epub 2017 Mar 30.

引用本文的文献

1
A Study of Healthcare Team Communication Networks using Visual Analytics.
Proc 2023 7th Int Conf Med Health Inform ICMHI 2023 (2023). 2023 May;2023:104-111. doi: 10.1145/3608298.3608319. Epub 2023 Oct 18.
2
MedCV: An Interactive Visualization System for Patient Cohort Identification from Medical Claim Data.
Proc ACM Int Conf Inf Knowl Manag. 2022 Oct;2022:4828-4832. doi: 10.1145/3511808.3557157. Epub 2022 Nov 4.
4
A Tale of Two Centers: Visual Exploration of Health Disparities in Cancer Care.
IEEE Pac Vis Symp. 2022 Apr;2022:101-110. doi: 10.1109/pacificvis53943.2022.00019. Epub 2022 Jun 8.
5
Implementing an Application Programming Interface for PROMIS Measures at Three Medical Centers.
Appl Clin Inform. 2021 Oct;12(5):979-983. doi: 10.1055/s-0041-1736464. Epub 2021 Oct 20.
6
THALIS: Human-Machine Analysis of Longitudinal Symptoms in Cancer Therapy.
IEEE Trans Vis Comput Graph. 2022 Jan;28(1):151-161. doi: 10.1109/TVCG.2021.3114810. Epub 2021 Dec 24.
7

本文引用的文献

1
Interactive Visualization and Exploration of Patient Progression in a Hospital Setting.
AMIA Annu Symp Proc. 2018 Apr 16;2017:1773-1782. eCollection 2017.
2
Considerations for Visualizing Comparison.
IEEE Trans Vis Comput Graph. 2018 Jan;24(1):413-423. doi: 10.1109/TVCG.2017.2744199. Epub 2017 Aug 29.
3
Validation of the PROMIS measures of self-efficacy for managing chronic conditions.
Qual Life Res. 2017 Jul;26(7):1915-1924. doi: 10.1007/s11136-017-1527-3. Epub 2017 Feb 26.
4
PROMIS PF CAT Outperforms the ODI and SF-36 Physical Function Domain in Spine Patients.
Spine (Phila Pa 1976). 2017 Jun 15;42(12):921-929. doi: 10.1097/BRS.0000000000001965.
5
Supporting Iterative Cohort Construction with Visual Temporal Queries.
IEEE Trans Vis Comput Graph. 2016 Jan;22(1):91-100. doi: 10.1109/TVCG.2015.2467622.
6
Mining and exploring care pathways from electronic medical records with visual analytics.
J Biomed Inform. 2015 Aug;56:369-78. doi: 10.1016/j.jbi.2015.06.020. Epub 2015 Jul 2.
7
A visual-interactive system for prostate cancer cohort analysis.
IEEE Comput Graph Appl. 2015 May-Jun;35(3):44-55. doi: 10.1109/MCG.2015.49.
8
Personalized mortality prediction driven by electronic medical data and a patient similarity metric.
PLoS One. 2015 May 15;10(5):e0127428. doi: 10.1371/journal.pone.0127428. eCollection 2015.
9
Bringing cohort studies to the bedside: framework for a 'green button' to support clinical decision-making.
J Comp Eff Res. 2015 May;4(3):191-197. doi: 10.2217/cer.15.12. Epub 2015 May 11.
10
A methodology for interactive mining and visual analysis of clinical event patterns using electronic health record data.
J Biomed Inform. 2014 Apr;48:148-59. doi: 10.1016/j.jbi.2014.01.007. Epub 2014 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验