Mack Stephanie A, Griffin Sinéad M, Neaton Jeffrey B
Department of Physics, University of California, Berkeley, CA 94720.
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
Proc Natl Acad Sci U S A. 2019 May 7;116(19):9197-9201. doi: 10.1073/pnas.1821533116. Epub 2019 Apr 24.
Lithium, a prototypical simple metal under ambient conditions, has a surprisingly rich phase diagram under pressure, taking up several structures with reduced symmetry, low coordination numbers, and even semiconducting character with increasing density. Using first-principles calculations, we demonstrate that some predicted high-pressure phases of elemental Li also host topological electronic structures. Beginning at 80 GPa and coincident with a transition to the previously predicted phase, we find Li to be a Dirac nodal line semimetal. We further calculate that Li retains linearly dispersing energy bands near the Fermi energy in subsequent predicted higher-pressure phases and that it exhibits a Lifshitz transition between two phases at 220 GPa. The [Formula: see text] phase at 500 GPa forms buckled honeycomb layers that give rise to a Dirac crossing 1 eV below the Fermi energy. The well-isolated topological nodes near the Fermi level in these phases result from increasing p-orbital character with density at the Fermi level, itself a consequence of rising 1s core wavefunction overlap, and a preference for nonsymmorphic symmetries in the crystal structures favored at these pressures. Our results provide evidence that under pressure, bulk 3D materials with light elements, or even pure elemental systems, can undergo phase transitions hosting nontrivial topological phase transitions hosting nontrivial topological properties near the Fermi level with measurable consequences and that, through pressure, we can access these phases in elemental lithium.
锂在常压下是一种典型的简单金属,然而在高压下却具有出奇丰富的相图,随着密度增加会呈现出几种对称性降低、配位数减少甚至具有半导体特性的结构。通过第一性原理计算,我们证明了元素锂的一些预测高压相也具有拓扑电子结构。从80吉帕开始,与向先前预测相的转变同时发生,我们发现锂是一种狄拉克节线半金属。我们进一步计算得出,在后续预测的更高压相中,锂在费米能级附近保留线性色散能带,并且在220吉帕时在两个相之间表现出里夫希茨转变。500吉帕时的[公式:见原文]相形成了弯曲的蜂窝层,在费米能级以下1电子伏特处产生狄拉克交叉。这些相中费米能级附近良好隔离的拓扑节点是由于费米能级处p轨道特征随密度增加而产生的,这本身是1s核心波函数重叠增加的结果,也是这些压力下晶体结构中对非简单对称的偏好的结果。我们的结果提供了证据,表明在压力下,含轻元素的体三维材料,甚至纯元素体系,都可以经历相变,在费米能级附近呈现非平凡拓扑相变并具有可测量的结果,并且通过压力,我们可以在元素锂中获得这些相。