Unit of Structural Microbiology, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528 & Université Paris Diderot, 25 rue du Docteur Roux, 75724, Paris cedex 15, France.
Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Mataojo 2020, 11400, Montevideo, Uruguay.
Genes Immun. 2019 May;20(5):383-393. doi: 10.1038/s41435-019-0069-9. Epub 2019 Apr 25.
Protein phosphorylation is known to be one of the keystones of signal sensing and transduction in all living organisms. Once thought to be essentially confined to the eukaryotic kingdoms, reversible phosphorylation on serine, threonine, and tyrosine residues, has now been shown to play a major role in many prokaryotes, where the number of Ser/Thr protein kinases (STPKs) equals or even exceeds that of two-component systems. Mycobacterium tuberculosis, the etiological agent of tuberculosis, is one of the most studied organisms for the role of STPK-mediated signaling in bacteria. Driven by the interest and tractability of these enzymes as potential therapeutic targets, extensive studies revealed the remarkable conservation of protein kinases and their cognate phosphatases across evolution, and their involvement in bacterial physiology and virulence. Here, we present an overview of the current knowledge of mycobacterial STPK structures and kinase activation mechanisms, and we then focus on PknB and PknG, two well-characterized STPKs that are essential for the intracellular survival of the bacillus. We summarize the mechanistic evidence that links PknB to the regulation of peptidoglycan synthesis in cell division and morphogenesis, and the major findings that establish PknG as a master regulator of central carbon and nitrogen metabolism. Two decades after the discovery of STPKs in M. tuberculosis, the emerging landscape of O-phosphosignaling is starting to unveil how eukaryotic-like kinases can be engaged in unique, non-eukaryotic-like, signaling mechanisms in mycobacteria.
蛋白质磷酸化是所有生物中信号感应和转导的关键之一。曾经被认为基本上局限于真核生物王国,丝氨酸、苏氨酸和酪氨酸残基的可逆磷酸化,现在已经被证明在许多原核生物中发挥着重要作用,其中 Ser/Thr 蛋白激酶(STPKs)的数量等于甚至超过了双组分系统。结核分枝杆菌是结核病的病原体,是研究 STPK 介导的细菌信号转导作用的最具代表性的生物体之一。由于这些酶作为潜在治疗靶点的兴趣和可操作性,广泛的研究揭示了蛋白激酶及其同源磷酸酶在进化过程中的惊人保守性,以及它们在细菌生理学和毒力中的参与。在这里,我们概述了目前对分枝杆菌 STPK 结构和激酶激活机制的了解,然后重点介绍了 PknB 和 PknG,这两种经过充分研究的 STPK 是芽孢杆菌细胞内生存所必需的。我们总结了将 PknB 与肽聚糖合成在细胞分裂和形态发生中的调节联系起来的机制证据,以及确立 PknG 作为中央碳和氮代谢主要调节剂的主要发现。在结核分枝杆菌中发现 STPK 二十年后,O-磷酸化信号的新兴景观开始揭示真核样激酶如何参与分枝杆菌中独特的、非真核样的信号机制。