Wu Guoyao, Bazer Fuller W
Department of Animal Science and Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843-2471 USA.
J Anim Sci Biotechnol. 2019 Apr 19;10:28. doi: 10.1186/s40104-019-0337-6. eCollection 2019.
Meeting the increasing demands for high-quality pork protein requires not only improved diets but also biotechnology-based breeding to generate swine with desired production traits. Biotechnology can be classified as the cloning of animals with identical genetic composition or genetic engineering (via recombinant DNA technology and gene editing) to produce genetically modified animals or microorganisms. Cloning helps to conserve species and breeds, particularly those with excellent biological and economical traits. Recombinant DNA technology combines genetic materials from multiple sources into single cells to generate proteins. Gene (genome) editing involves the deletion, insertion or silencing of genes to produce: (a) genetically modified pigs with important production traits; or (b) microorganisms without an ability to resist antimicrobial substances. Current gene-editing tools include the use of zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), or clustered regularly interspaced short palindromic repeats-associated nuclease-9 (CRISPR/Cas9) as editors. ZFN, TALEN, or CRISPR/Cas9 components are delivered into target cells through transfection (lipid-based agents, electroporation, nucleofection, or microinjection) or bacteriophages, depending on cell type and plasmid. Compared to the ZFN and TALEN, CRISPR/Cas9 offers greater ease of design and greater flexibility in genetic engineering, but has a higher frequency of off-target effects. To date, genetically modified pigs have been generated to express bovine growth hormone, bacterial phytase, fungal carbohydrases, plant and fatty acid desaturases, and uncoupling protein-1; and to lack myostatin, α-1,3-galactosyltransferase, or CD163 (a cellular receptor for the "blue ear disease" virus). Biotechnology holds promise in improving the efficiency of swine production and developing alternatives to antibiotics in the future.
满足对优质猪肉蛋白日益增长的需求,不仅需要改善日粮,还需要基于生物技术的育种来培育具有理想生产性状的猪。生物技术可分为克隆具有相同遗传组成的动物或基因工程(通过重组DNA技术和基因编辑)以生产转基因动物或微生物。克隆有助于保护物种和品种,特别是那些具有优良生物学和经济性状的品种。重组DNA技术将来自多个来源的遗传物质组合到单个细胞中以产生蛋白质。基因(基因组)编辑涉及基因的缺失、插入或沉默,以产生:(a)具有重要生产性状的转基因猪;或(b)无抗微生物物质抗性能力的微生物。目前的基因编辑工具包括使用锌指核酸酶(ZFN)、转录激活样效应核酸酶(TALEN)或成簇规律间隔短回文重复序列相关核酸酶9(CRISPR/Cas9)作为编辑器。根据细胞类型和质粒,ZFN、TALEN或CRISPR/Cas9组件通过转染(基于脂质的试剂、电穿孔、核转染或显微注射)或噬菌体递送至靶细胞。与ZFN和TALEN相比,CRISPR/Cas9在基因工程中设计更简便且灵活性更高,但脱靶效应频率更高。迄今为止,已培育出表达牛生长激素、细菌植酸酶、真菌碳水化合物酶、植物和脂肪酸去饱和酶以及解偶联蛋白-1的转基因猪;以及缺乏肌肉生长抑制素、α-1,3-半乳糖基转移酶或CD163(“蓝耳病”病毒的细胞受体)的猪。生物技术有望提高猪的生产效率并在未来开发抗生素替代品。