Suppr超能文献

果蝇全基因组 Kdm4 组蛋白去甲基化酶转录调控。

Genome-wide Kdm4 histone demethylase transcriptional regulation in Drosophila.

机构信息

Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA, 02114, USA.

Department of Microbiology and Immunology, Harvard Medical School, 77 Ave. Louis Pasteur, Boston, MA, 02115, USA.

出版信息

Mol Genet Genomics. 2019 Oct;294(5):1107-1121. doi: 10.1007/s00438-019-01561-z. Epub 2019 Apr 24.

Abstract

The histone lysine demethylase 4 (Kdm4/Jmjd2/Jhdm3) family is highly conserved across species and reverses di- and tri-methylation of histone H3 lysine 9 (H3K9) and lysine 36 (H3K36) at the N-terminal tail of the core histone H3 in various metazoan species including Drosophila, C.elegans, zebrafish, mice and humans. Previous studies have shown that the Kdm4 family plays a wide variety of important biological roles in different species, including development, oncogenesis and longevity by regulating transcription, DNA damage response and apoptosis. Only two functional Kdm4 family members have been identified in Drosophila, compared to five in mammals, thus providing a simple model system. Drosophila Kdm4 loss-of-function mutants do not survive past the early 2nd instar larvae stage and display a molting defect phenotype associated with deregulated ecdysone hormone receptor signaling. To further characterize and identify additional targets of Kdm4, we employed a genome-wide approach to investigate transcriptome alterations in Kdm4 mutants versus wild-type during early development. We found evidence of increased deregulated transcripts, presumably associated with a progressive accumulation of H3K9 and H3K36 methylation through development. Gene ontology analyses found significant enrichment of terms related to the ecdysteroid hormone signaling pathway important in development, as expected, and additionally previously unidentified potential targets that warrant further investigation. Since Kdm4 is highly conserved across species, our results may be applicable more widely to other organisms and our genome-wide dataset may serve as a useful resource for further studies.

摘要

组蛋白赖氨酸去甲基酶 4(Kdm4/Jmjd2/Jhdm3)家族在物种间高度保守,可逆转各种后生动物物种(包括果蝇、秀丽隐杆线虫、斑马鱼、小鼠和人类)核心组蛋白 H3 的 N-端尾部中组蛋白 H3 赖氨酸 9(H3K9)和赖氨酸 36(H3K36)的二甲基化和三甲基化。先前的研究表明,Kdm4 家族在不同物种中通过调节转录、DNA 损伤反应和细胞凋亡,发挥着广泛而重要的生物学作用,包括发育、肿瘤发生和长寿。与哺乳动物中的五个相比,果蝇中仅鉴定出两个功能性 Kdm4 家族成员,因此提供了一个简单的模型系统。果蝇 Kdm4 功能丧失突变体无法存活到早期 2 龄幼虫阶段,并表现出蜕皮激素受体信号转导失调相关的蜕皮缺陷表型。为了进一步表征和鉴定 Kdm4 的其他靶标,我们采用全基因组方法研究了早期发育过程中 Kdm4 突变体与野生型之间的转录组变化。我们发现证据表明,转录本的调控失调增加,推测与 H3K9 和 H3K36 甲基化通过发育的逐渐积累有关。基因本体分析发现,与发育中重要的蜕皮激素信号通路相关的术语显著富集,这是意料之中的,此外还发现了以前未识别的潜在靶标,值得进一步研究。由于 Kdm4 在物种间高度保守,我们的结果可能更广泛地适用于其他生物体,并且我们的全基因组数据集可能成为进一步研究的有用资源。

相似文献

1
Genome-wide Kdm4 histone demethylase transcriptional regulation in Drosophila.
Mol Genet Genomics. 2019 Oct;294(5):1107-1121. doi: 10.1007/s00438-019-01561-z. Epub 2019 Apr 24.
3
The oncogenic potential of Jumonji D2 (JMJD2/KDM4) histone demethylase overexpression.
Biochem Cell Biol. 2013 Dec;91(6):369-77. doi: 10.1139/bcb-2012-0054. Epub 2012 Dec 5.
4
Evolution and conservation of JmjC domain proteins in the green lineage.
Mol Genet Genomics. 2016 Feb;291(1):33-49. doi: 10.1007/s00438-015-1089-4. Epub 2015 Jul 8.
5
The KDM4/JMJD2 histone demethylases are required for hematopoietic stem cell maintenance.
Blood. 2019 Oct 3;134(14):1154-1158. doi: 10.1182/blood.2019000855. Epub 2019 Aug 21.
6
Continual removal of H3K9 promoter methylation by Jmjd2 demethylases is vital for ESC self-renewal and early development.
EMBO J. 2016 Jul 15;35(14):1550-64. doi: 10.15252/embj.201593317. Epub 2016 Jun 6.
7
KDM4 Demethylases: Structure, Function, and Inhibitors.
Adv Exp Med Biol. 2023;1433:87-111. doi: 10.1007/978-3-031-38176-8_5.
8
Gene regulation by the lysine demethylase KDM4A in Drosophila.
Dev Biol. 2013 Jan 15;373(2):453-63. doi: 10.1016/j.ydbio.2012.11.011. Epub 2012 Nov 27.
9
The histone H3K36 demethylase Rph1/KDM4 regulates the expression of the photoreactivation gene PHR1.
Nucleic Acids Res. 2011 May;39(10):4151-65. doi: 10.1093/nar/gkr040. Epub 2011 Feb 3.

引用本文的文献

2
JMJD family proteins in cancer and inflammation.
Signal Transduct Target Ther. 2022 Sep 1;7(1):304. doi: 10.1038/s41392-022-01145-1.
3
KDM4 Involvement in Breast Cancer and Possible Therapeutic Approaches.
Front Oncol. 2021 Oct 28;11:750315. doi: 10.3389/fonc.2021.750315. eCollection 2021.
4
The Epigenetics of Aging in Invertebrates.
Int J Mol Sci. 2019 Sep 13;20(18):4535. doi: 10.3390/ijms20184535.

本文引用的文献

2
Continual removal of H3K9 promoter methylation by Jmjd2 demethylases is vital for ESC self-renewal and early development.
EMBO J. 2016 Jul 15;35(14):1550-64. doi: 10.15252/embj.201593317. Epub 2016 Jun 6.
3
Jmjd2/Kdm4 demethylases are required for expression of Il3ra and survival of acute myeloid leukemia cells.
Genes Dev. 2016 Jun 1;30(11):1278-88. doi: 10.1101/gad.280495.116. Epub 2016 Jun 2.
4
SCF(Fbxo22)-KDM4A targets methylated p53 for degradation and regulates senescence.
Nat Commun. 2016 Feb 12;7:10574. doi: 10.1038/ncomms10574.
5
Histone H3K36 methylation regulates pre-mRNA splicing in Saccharomyces cerevisiae.
RNA Biol. 2016;13(4):412-26. doi: 10.1080/15476286.2016.1144009. Epub 2016 Jan 29.
6
Heterochromatin components in germline stem cell maintenance.
Sci Rep. 2015 Dec 2;5:17463. doi: 10.1038/srep17463.
7
KDM4/JMJD2 Histone Demethylase Inhibitors Block Prostate Tumor Growth by Suppressing the Expression of AR and BMYB-Regulated Genes.
Chem Biol. 2015 Sep 17;22(9):1185-96. doi: 10.1016/j.chembiol.2015.08.007. Epub 2015 Sep 10.
10
KDM4 histone demethylase inhibitors for anti-cancer agents: a patent review.
Expert Opin Ther Pat. 2015 Feb;25(2):135-44. doi: 10.1517/13543776.2014.991310. Epub 2014 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验