Sette Camila D'Avila Braga, da Cunha Thiago Ferreira, Kiametis Alessandra Sofia, Martins João Batista Lopes, Gargano Ricardo
Instituto de Física, Universidade de Brasília, Brasília, Brazil.
Instituto de Química, Universidade de Brasília, Brasília, Brazil.
J Mol Model. 2019 Apr 24;25(5):126. doi: 10.1007/s00894-019-4023-6.
In this work, we calculate the rovibrational energies and spectroscopic constants for the systems formed by ammonia (NH) and noble gases (Ng=He, Ne, Ar, Kr and Xe). For the spectroscopic constant calculations, we used two different methods: Dunham and another one that use rovibrational energies (here calculated by discrete variable method). In both cases, we used the improved Lennard-Jones potential energy curves (PECs). These PECs, which describe very well van der Waals systems, were built using the dissociation and equilibrium distance obtained from experiments of crossed molecular beams. The spectroscopic constant results, obtained by both methods were in excellent agreement with each other for all NH-Ng studied systems. Also in relation to NH-He system, we realize that although this system has a relatively small dissociation energy, it has one vibrational level. Finally, the spectroscopic constants and fundamental rovibrational energy results were used to verify the stability of each system through the lifetime decomposition.
在这项工作中,我们计算了由氨(NH)和稀有气体(Ng = He、Ne、Ar、Kr和Xe)形成的体系的转动振动能量和光谱常数。对于光谱常数的计算,我们使用了两种不同的方法:邓纳姆方法和另一种使用转动振动能量的方法(此处通过离散变量方法计算)。在这两种情况下,我们都使用了改进的 Lennard-Jones 势能曲线(PEC)。这些能很好地描述范德华体系的 PEC 是利用从交叉分子束实验中获得的解离和平衡距离构建的。对于所有研究的 NH-Ng 体系,两种方法得到的光谱常数结果彼此非常吻合。同样关于 NH-He 体系,我们发现尽管该体系的解离能相对较小,但它有一个振动能级。最后,光谱常数和基本转动振动能量结果被用于通过寿命分解来验证每个体系的稳定性。