Biomolecular Engineering Laboratory, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy.
Dipartimento di Energia, Politecnico di Milano, via Ponzio 34/3, 20133, Milan, Italy.
J Mol Model. 2019 Apr 24;25(5):124. doi: 10.1007/s00894-019-4012-9.
Besides their biomolecular relevance, amyloids, generated by the self-assembly of peptides and proteins, are highly organized structures useful for nanotechnology applications. The introduction of halogen atoms in these peptides, and thus the possible formation of halogen bonds, allows further possibilities to finely tune the amyloid nanostructure. In this work, we performed molecular dynamics simulations on different halogenated derivatives of the β-amyloid peptide core-sequence KLVFF, by using a modified AMBER force field in which the σ-hole located on the halogen atom is modeled with a positively charged extra particle. The analysis of equilibrated structures shows good agreement with crystallographic data and experimental results, in particular concerning the formation of halogen bonds and the stability of the supramolecular structures. The modified force field described here allows describing the atomistic details contributing to peptides aggregation, with particular focus on the role of halogen bonds. This framework can potentially help the design of novel halogenated peptides with desired aggregation propensity. Graphical abstract Molecular dynamics investigation of halogenated amyloidogenic peptides.
除了它们的生物分子相关性外,由肽和蛋白质自组装生成的淀粉样蛋白是高度有序的结构,可用于纳米技术应用。在这些肽中引入卤素原子,从而可能形成卤键,为进一步微调淀粉样蛋白纳米结构提供了可能。在这项工作中,我们使用了一种经过修改的 AMBER 力场,该力场在其中用带正电荷的额外粒子模拟位于卤素原子上的 σ-hole,对 β-淀粉样蛋白核心序列 KLVFF 的不同卤化衍生物进行了分子动力学模拟。平衡结构的分析与晶体学数据和实验结果吻合良好,特别是涉及卤键的形成和超分子结构的稳定性。这里描述的修改后的力场允许描述有助于肽聚集的原子细节,特别关注卤键的作用。该框架有可能有助于设计具有所需聚集倾向的新型卤化肽。