Suppr超能文献

在异质结构 MoO/g-CN 光催化剂中的直接 Z 型电荷转移和光催化染料降解中活性自由基的生成。

Direct Z-Scheme charge transfer in heterostructured MoO/g-CN photocatalysts and the generation of active radicals in photocatalytic dye degradations.

机构信息

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Dongsanlu 1#, Erxianqiao, Chengdu, 610059, Sichuan, PR China; Department of Electrical & Computer Engineering, University of Houston, Houston, TX, 77204, United States.

Department of Electrical & Computer Engineering, University of Houston, Houston, TX, 77204, United States; Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610064, China.

出版信息

Environ Pollut. 2019 Jul;250:338-345. doi: 10.1016/j.envpol.2019.04.010. Epub 2019 Apr 6.

Abstract

Photocatalytic degradation is an attractive strategy to purify waste water contaminated by macromolecular organics. Compared with the single-component photocatalysts, heterostructures of different semiconductors have been widely used to improve the photocatalytic performance. In this work, we fabricate a hetero-structured photocatalyst consisting of two-dimensional graphitic carbon nitride (g-CN) nanosheets and commercial MoO microparticles through a simple mixing and annealing process. The photocatalytic performance was evaluated in various dye degradation reactions, especially Rhodamine (RhB) degradation. The MoO/g-CN composite shown a significant improvement compared with individual MoO or g-CN as well as their physical mixture. By applying electron spin resonance (ESR) spin-trap spectra, radical scavenge experiments and electrochemical analysis, we find that a direct Z-scheme charge transfer between MoO and g-CN not only causes an accumulation of electrons in g-CN and holes in MoO, but also boosts the formation of superoxide radical and hydroxyl radical. The superoxide radical and hole dominate the photocatalytic degradation, while the hydroxyl radical plays a negligible role and its production can be suppressed by lowering the pH value.

摘要

光催化降解是一种很有吸引力的策略,可以净化被高分子有机物污染的废水。与单一组分的光催化剂相比,不同半导体的异质结构已被广泛用于提高光催化性能。在这项工作中,我们通过简单的混合和退火过程,制备了一种由二维石墨相氮化碳(g-CN)纳米片和商业 MoO 微颗粒组成的异质结构光催化剂。通过各种染料降解反应,特别是 Rhodamine(RhB)降解,评估了光催化性能。MoO/g-CN 复合材料与单独的 MoO 或 g-CN 以及它们的物理混合物相比,表现出显著的改善。通过应用电子顺磁共振(ESR)自旋捕获谱、自由基捕获实验和电化学分析,我们发现 MoO 和 g-CN 之间直接的 Z 型电荷转移不仅导致 g-CN 中积累电子和 MoO 中积累空穴,而且还促进了超氧自由基和羟基自由基的形成。超氧自由基和空穴主导光催化降解,而羟基自由基的作用可以忽略不计,并且通过降低 pH 值可以抑制其生成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验