Suppr超能文献

Cp*Co配合物催化CO加氢制甲醇:机理洞察与配体设计

Hydrogenation of CO to Methanol Catalyzed by Cp*Co Complexes: Mechanistic Insights and Ligand Design.

作者信息

Yan Xiuli, Ge Hongyu, Yang Xinzheng

机构信息

Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China.

University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China.

出版信息

Inorg Chem. 2019 May 6;58(9):5494-5502. doi: 10.1021/acs.inorgchem.8b03214. Epub 2019 Apr 26.

Abstract

A direct hydride transfer mechanism with three cascade cycles for the conversion of carbon dioxide and dihydrogen to methanol (CO + 3H → CHOH + HO) catalyzed by a half-sandwich cobalt complex [CpCo(bpy-Me)OH] (1) is proposed based on density functional theory calculations. The formation of methanediol via hydride transfer from Co to formic acid (4 → TS) is the rate-determining step with a total barrier of 26.0 kcal/mol in free energy. Furthermore, 15 analogues of 1 are constructed by replacing the hydrogen atoms at the two meta and para positions of the bipyridine ligand with different functional groups (1b-1l), the carbon atoms in the bipyridine ligand with nitrogen atoms (1m-1o), and one pyridine ligand with N-heterocyclic carbene (1p). Among all newly proposed complexes, [CpCo(2,2'-bipyrazine)OH] (1n) is the most active one with a total barrier of 19.6 kcal/mol in free energy. Such a low barrier indicates 1n is a promising catalyst for efficient conversion of CO and H to methanol at room temperature.

摘要

基于密度泛函理论计算,提出了一种由半夹心钴配合物[CpCo(bpy-Me)OH] (1)催化二氧化碳和氢气转化为甲醇(CO₂ + 3H₂ → CH₃OH + H₂O)的具有三个级联循环的直接氢化物转移机制。通过氢化物从Co转移到甲酸形成甲二醇(4 → TS)是速率决定步骤,自由能总势垒为26.0 kcal/mol。此外,通过用不同官能团取代联吡啶配体两个间位和对位的氢原子(1b - 1l)、将联吡啶配体中的碳原子替换为氮原子(1m - 1o)以及用N-杂环卡宾取代一个吡啶配体(1p),构建了1的15种类似物。在所有新提出的配合物中,[CpCo(2,2'-联吡嗪)OH] (1n)是活性最高的,自由能总势垒为19.6 kcal/mol。如此低的势垒表明1n是在室温下将CO₂和H₂高效转化为甲醇的有前景的催化剂。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验