Al-Bander H A, Mock D M, Etheredge S B, Paukert T T, Humphreys M H, Morris R C
Kidney Int. 1986 Dec;30(6):804-12. doi: 10.1038/ki.1986.259.
During the acute renal tubular dysfunction of Fanconi syndrome and type 2 renal tubular acidosis (FS/RTA2) induced by maleic acid in the unanesthetized dog, we observed: 30 minutes after the onset of FS/RTA2, the urinary excretion of lysosomal enzymes, N-acetyl-beta-glucosaminidase (NAG), beta-glucuronidase (beta-gluc) and beta-galactosidase (beta-galac), increased simultaneously with the anticipated increase in renal clearance of lysozyme; the severities of all these hyperenzymurias increased rapidly, progressively, and in parallel, all reaching a peak some 60 to 80 minutes after their onset; thereafter, while the FS/RTA2 continued undiminished in severity, the severity of the hyperenzymurias decreased rapidly, greatly, progressively, and in parallel; and sodium phosphate loading strikingly attenuated the FS/RTA2 and the hyperenzymurias. Thus, the maleic acid-induced FS/RTA2 is attended by an acute reversible-complex derangement in the renal tubular processing of proteins that: affects not only lysozyme which is normally filtered, but also NAG and other lysosomal enzymes, which are not; and is to some extent functionally separable from that of FS/RTA2. The findings suggest that the derangements in renal processing of lysozyme and lysosomal enzymes are linked, and that a phosphate-dependent metabolic abnormality in the proximal tubule can participate in the pathogenesis of both these derangements and the FS/RTA2.