Suppr超能文献

美国德克萨斯州哈里斯县天气和天气变化对蚊子数量和西尼罗河病毒感染的影响。

The influence of weather and weather variability on mosquito abundance and infection with West Nile virus in Harris County, Texas, USA.

机构信息

Department of Entomology, Texas A&M University, College Station, TX, USA.

Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud (INCIENSA), Tres Ríos, Cartago, Costa Rica.

出版信息

Sci Total Environ. 2019 Jul 20;675:260-272. doi: 10.1016/j.scitotenv.2019.04.109. Epub 2019 Apr 12.

Abstract

Early warning systems for vector-borne diseases (VBDs) prediction are an ecological application where data from the interface of several environmental components can be used to predict future VBD transmission. In general, models for early warning systems only consider average environmental conditions ignoring variation in weather variables, despite the prediction from Schmalhausen's law about the importance of environmental variability for biological systems. We present results from a long-term mosquito surveillance program from Harris County, Texas, USA, where we use time series analysis techniques to study the abundance and West Nile virus (WNV) infection patterns in the local primary vector, Culex quinquefasciatus Say. We found that, as predicted by Schmalhausen's law, mosquito abundance was associated with the standard deviation and kurtosis of environmental variables. By contrast, WNV infection rates were associated with 8-month lagged temperature, suggesting environmental conditions during overwintering might be key for WNV amplification during summer outbreaks. Finally, model validation showed that seasonal autoregressive models successfully predicted mosquito WNV infection rates up to 2 months ahead, but did rather poorly at predicting mosquito abundance, a result that might reflect impacts of vector control for mosquito population reduction, geographic scale, and other artifacts generated by operational constraints of mosquito surveillance systems.

摘要

虫媒疾病(VBD)预警系统是一种生态应用,可利用来自多个环境组件界面的数据来预测未来的 VBD 传播。一般来说,预警系统模型仅考虑平均环境条件,忽略天气变量的变化,尽管 Schmalhausen 定律预测环境变异性对生物系统很重要。我们展示了来自美国德克萨斯州哈里斯县的一项长期蚊子监测计划的结果,我们使用时间序列分析技术研究了当地主要媒介库蚊的丰度和西尼罗河病毒(WNV)感染模式。我们发现,正如 Schmalhausen 定律所预测的那样,蚊子的丰度与环境变量的标准差和峰度有关。相比之下,WNV 感染率与 8 个月的滞后温度有关,这表明越冬期间的环境条件可能是夏季暴发期间 WNV 扩增的关键。最后,模型验证表明,季节性自回归模型可成功预测蚊子 WNV 感染率长达 2 个月,但预测蚊子丰度的效果却相当差,这可能反映了蚊子种群减少的控制措施、地理范围以及蚊子监测系统操作限制产生的其他假象对蚊子数量的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验