School of Geography and Development, University of Arizona, 409 Harvill Building, Tucson, AZ 85721, USA.
Int J Biometeorol. 2010 Sep;54(5):517-29. doi: 10.1007/s00484-010-0349-6. Epub 2010 Aug 5.
Climate can strongly influence the population dynamics of disease vectors and is consequently a key component of disease ecology. Future climate change and variability may alter the location and seasonality of many disease vectors, possibly increasing the risk of disease transmission to humans. The mosquito species Culex quinquefasciatus is a concern across the southern United States because of its role as a West Nile virus vector and its affinity for urban environments. Using established relationships between atmospheric variables (temperature and precipitation) and mosquito development, we have created the Dynamic Mosquito Simulation Model (DyMSiM) to simulate Cx. quinquefasciatus population dynamics. The model is driven with climate data and validated against mosquito count data from Pasco County, Florida and Coachella Valley, California. Using 1-week and 2-week filters, mosquito trap data are reproduced well by the model (P < 0.0001). Dry environments in southern California produce different mosquito population trends than moist locations in Florida. Florida and California mosquito populations are generally temperature-limited in winter. In California, locations are water-limited through much of the year. Using future climate projection data generated by the National Center for Atmospheric Research CCSM3 general circulation model, we applied temperature and precipitation offsets to the climate data at each location to evaluate mosquito population sensitivity to possible future climate conditions. We found that temperature and precipitation shifts act interdependently to cause remarkable changes in modeled mosquito population dynamics. Impacts include a summer population decline from drying in California due to loss of immature mosquito habitats, and in Florida a decrease in late-season mosquito populations due to drier late summer conditions.
气候可以强烈影响疾病媒介的种群动态,因此是疾病生态学的关键组成部分。未来的气候变化和变异性可能会改变许多疾病媒介的位置和季节性,从而可能增加疾病向人类传播的风险。蚊子物种库蚊在美国南部是一个令人担忧的问题,因为它是西尼罗河病毒的载体,并且喜欢城市环境。我们利用大气变量(温度和降水)与蚊子发育之间的既定关系,创建了动态蚊子模拟模型(DyMSiM)来模拟库蚊种群动态。该模型由气候数据驱动,并针对佛罗里达州帕斯科县和加利福尼亚州科切拉谷的蚊子计数数据进行了验证。使用 1 周和 2 周的过滤器,模型很好地再现了蚊子诱捕器数据(P < 0.0001)。南加州干燥的环境会产生与佛罗里达州潮湿地区不同的蚊子种群趋势。佛罗里达州和加利福尼亚州的蚊子种群在冬季通常受到温度限制。在加利福尼亚州,全年大部分时间都受到水资源限制。我们使用国家大气研究中心 CCSM3 通用环流模型生成的未来气候预测数据,在每个地点的气候数据上应用温度和降水偏移,以评估蚊子种群对可能的未来气候条件的敏感性。我们发现,温度和降水的变化相互作用,导致模型化的蚊子种群动态发生显著变化。影响包括由于缺乏幼蚊栖息地而导致加利福尼亚州夏季干燥导致的种群减少,以及由于夏末干旱条件导致佛罗里达州后期蚊子种群减少。