Suppr超能文献

中空银纳米结构:封端剂在调控形状、结构和等离子体性质中的作用。

Hollow Silver Nanostructures: The Role of Capping Agents in Tailoring the Shape, Structure, and Plasmonic Properties.

机构信息

Department of Physics, School of Applied Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar-751024, India.

Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya-Panchanpur Road, Gaya-824236, India.

出版信息

Microsc Microanal. 2019 Dec;25(6):1431-1436. doi: 10.1017/S1431927619000473.

Abstract

The shape- and structure-directing ability of capping agents, namely, acetic acid (AA) and folic acid (FA), has been analyzed in the synthesis of hollow plasmonic nanostructures via the nanoscale Kirkendall effect. FA was found to possess both shape-directing and structure-directing abilities when spherical solid Ag2O nanoparticles were transformed into hollow silver nanocubes (HAgNCs). In contrast, AA acted only as a structure-directing agent in the transformation from solid Ag2O nanospheres to hollow Ag nanospheres (HAgNSs). FA capping leads to enhanced plasmon tunability range from 535 to 640 nm in the hollow silver nanostructures. The size and shape of nanostructures were analyzed by high-resolution transmission electron microscopy (HRTEM). HRTEM revealed that the outer diameter of AA-capped HAgNSs is 50 ± 10 nm while edge-length for FA-capped HAgNCs is 100 ± 15 nm. The diameter of inner void space was found to be 30 ± 5 and 43 ± 5 nm for HAgNSs and HAgNCs, respectively. The phase purity of the hollow nanostructures was confirmed by X-ray diffraction and energy dispersive X-ray measurements. Due to unique structural and plasmonic features, FA-capped HAgNCs are well-suited for biomedical applications.

摘要

通过纳米级 Kirkendall 效应,在空心等离子体纳米结构的合成中分析了封端剂(即乙酸(AA)和叶酸(FA))的形状和结构导向能力。当球形固体 Ag2O 纳米粒子转化为空心银纳米立方(HAgNCs)时,发现 FA 同时具有形状导向和结构导向能力。相比之下,当固体 Ag2O 纳米球转化为空心 Ag 纳米球(HAgNSs)时,AA 仅作为结构导向剂起作用。FA 封端导致空心银纳米结构中的等离子体可调谐范围从 535nm 增强到 640nm。通过高分辨率透射电子显微镜(HRTEM)分析了纳米结构的尺寸和形状。HRTEM 显示,AA 封端的 HAgNSs 的外径为 50 ± 10nm,而 FA 封端的 HAgNCs 的边长为 100 ± 15nm。对于 HAgNSs 和 HAgNCs,内空空间的直径分别为 30 ± 5nm 和 43 ± 5nm。通过 X 射线衍射和能谱测量证实了空心纳米结构的相纯度。由于独特的结构和等离子体特征,FA 封端的 HAgNCs 非常适合生物医学应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验