Suppr超能文献

麻省理工学院1.3吉赫兹低温超导/高温超导核磁共振磁体:失超后分析与新型800兆赫兹插入件设计

MIT 1.3-GHz LTS/HTS NMR Magnet: Post Quench Analysis and New 800-MHz Insert Design.

作者信息

Park Dongkeun, Bascuñán Juan, Michael Philip C, Lee Jiho, Choi Yoon Hyuck, Li Yi, Hahn Seungyong, Iwasa Yukikazu

机构信息

Francis Bitter Magnet Laboratory / Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Korea. (

出版信息

IEEE Trans Appl Supercond. 2019 Aug;29(5). doi: 10.1109/TASC.2019.2901026. Epub 2019 Feb 22.

Abstract

We present post-quench analyses of the MIT 800-MHz REBCO insert magnet (H800), unexpectedly quenched during operation in March 2018, and design study of a new 800-MHz HTS insert (H800N). The as-wound H800 was supposed to contribute 18.7 T and, with an LTS background magnet (L500), produce 30.5 T corresponding to a proton resonance frequency of 1.3 GHz. The H800 was operated at 4.2 K in liquid helium and, about 5 minutes after the power supply reached a target operating current of 251.3 A, it experienced a quench. Because the damage in the H800 was more widespread than it first appeared, we decided to design and build a new insert magnet, H800N. In designing H800N, we try to eliminate unanticipated flaws in our H800 design. H800N is to be more stable not to quench and more reliably survive against quench without permanent damage by: 1) adopting a single solenoid structure composed of 40 stacked double pancake coils with improved cross-over sections; 2) enhancing thermal stability; and 3) reducing excessive current margin for quench protection.

摘要

我们展示了麻省理工学院800兆赫REBCO插入式磁体(H800)的失超后分析,该磁体在2018年3月运行期间意外失超,还展示了新型800兆赫高温超导插入式磁体(H800N)的设计研究。绕制好的H800本应提供18.7特斯拉的磁场,并与一个低温超导背景磁体(L500)共同产生30.5特斯拉的磁场,对应1.3吉赫的质子共振频率。H800在液氦中4.2K的温度下运行,在电源达到251.3A的目标运行电流约5分钟后,它发生了失超。由于H800中的损坏比最初看起来的更广泛,我们决定设计并制造一个新的插入式磁体H800N。在设计H800N时,我们试图消除H800设计中未预料到的缺陷。H800N将更加稳定,不易失超,并且在失超情况下更可靠地存活而不会造成永久性损坏,方法如下:1)采用由40个堆叠的双饼式线圈组成的单螺线管结构,其交叉截面得到改进;2)提高热稳定性;3)减少用于失超保护的过大电流裕度。

相似文献

1
MIT 1.3-GHz LTS/HTS NMR Magnet: Post Quench Analysis and New 800-MHz Insert Design.
IEEE Trans Appl Supercond. 2019 Aug;29(5). doi: 10.1109/TASC.2019.2901026. Epub 2019 Feb 22.
2
Assembly and Test of a 3-Nested-Coil 800-MHz REBCO Insert (H800) for the MIT 1.3 GHz LTS/HTS NMR Magnet.
IEEE Trans Appl Supercond. 2019 Aug;29(5). doi: 10.1109/TASC.2019.2901246. Epub 2019 Feb 25.
3
Design Overview of the MIT 1.3-GHz LTS/HTS NMR Magnet with a New REBCO Insert.
IEEE Trans Appl Supercond. 2021 Aug;31(5). doi: 10.1109/tasc.2021.3064006. Epub 2021 Mar 4.
4
Quench Analyses of the MIT 1.3-GHz LTS/HTS NMR Magnet.
IEEE Trans Appl Supercond. 2019 Aug;29(5). doi: 10.1109/TASC.2019.2903268. Epub 2019 Mar 6.
6
A Parametric Study on Overband Radial Build for a REBCO 800-MHz Insert of a 1.3-GHz LTS/HTS NMR Magnet.
IEEE Trans Appl Supercond. 2016 Jun;26(4). doi: 10.1109/tasc.2016.2521679. Epub 2016 Jan 26.
7
90-mm/18.8-T All-HTS Insert Magnet for 1.3 GHz LTS/HTS NMR Application: Magnet Design and Double-Pancake Coil Fabrication.
IEEE Trans Appl Supercond. 2014 Jun;24(3). doi: 10.1109/tasc.2013.2285781. Epub 2013 Oct 17.
8
Construction and Test Results of Coils 2 and 3 of a 3-Nested-Coil 800-MHz REBCO Insert for the MIT 1.3-GHz LTS/HTS NMR Magnet.
IEEE Trans Appl Supercond. 2018 Apr;28(3). doi: 10.1109/TASC.2017.2780043. Epub 2017 Dec 4.
9
Experimental and Numerical Studies on a Method to Mitigate Screening Current-Induced Field for No-Insulation REBCO Coils.
IEEE Trans Appl Supercond. 2019 Aug;29(5). doi: 10.1109/TASC.2019.2906221. Epub 2019 Mar 27.
10
An 800-MHz all-REBCO Insert for the 1.3-GHz LTS/HTS NMR Magnet Program-A Progress Report.
IEEE Trans Appl Supercond. 2016 Jun;26(4). doi: 10.1109/TASC.2015.2512045. Epub 2016 Jan 5.

引用本文的文献

2
A surface-shunting method for the prevention of a fault-mode-induced quench in high-field no-insulation REBCO magnets.
Supercond Sci Technol. 2024 Nov;37(11). doi: 10.1088/1361-6668/ad826a. Epub 2024 Oct 11.
3
First-Cut Design of a Benchtop Cryogen-Free 23.5-T/25-mm Magnet for 1-GHz Microcoil NMR.
IEEE Trans Appl Supercond. 2023 Aug;33(5). doi: 10.1109/tasc.2023.3252487. Epub 2023 Mar 3.
4
Review of progress and challenges of key mechanical issues in high-field superconducting magnets.
Natl Sci Rev. 2023 Jan 6;10(3):nwad001. doi: 10.1093/nsr/nwad001. eCollection 2023 Mar.
5
Sudden-Discharging Quench Dynamics in a No-Insulation Superconducting Coil.
IEEE Trans Appl Supercond. 2023 Aug;33(5). doi: 10.1109/tasc.2023.3238987. Epub 2023 Jan 23.
6
On fault-mode phenomenon in no-insulation superconducting magnets: A preventive approach.
Appl Phys Lett. 2022 Nov 7;121(19):194101. doi: 10.1063/5.0122493. Epub 2022 Nov 10.
7
Partial-Insulation HTS Magnet for Reduction of Quench-Induced Peak Currents.
IEEE Trans Appl Supercond. 2022 Sep;32(6). doi: 10.1109/tasc.2022.3156064. Epub 2022 Mar 3.
8
Design Overview of the MIT 1.3-GHz LTS/HTS NMR Magnet with a New REBCO Insert.
IEEE Trans Appl Supercond. 2021 Aug;31(5). doi: 10.1109/tasc.2021.3064006. Epub 2021 Mar 4.
9
Prototype REBCO Z1 and Z2 shim coils for ultra high-field.
Sci Rep. 2020 Dec 15;10(1):21946. doi: 10.1038/s41598-020-78644-0.

本文引用的文献

1
Assembly and Test of a 3-Nested-Coil 800-MHz REBCO Insert (H800) for the MIT 1.3 GHz LTS/HTS NMR Magnet.
IEEE Trans Appl Supercond. 2019 Aug;29(5). doi: 10.1109/TASC.2019.2901246. Epub 2019 Feb 25.
2
Design of a Tabletop Liquid-Helium-Free 23.5-T Magnet Prototype towards 1-GHz Microcoil NMR.
IEEE Trans Appl Supercond. 2019 Aug;29(5). doi: 10.1109/TASC.2019.2898704. Epub 2019 Feb 11.
4
Construction and Test Results of Coils 2 and 3 of a 3-Nested-Coil 800-MHz REBCO Insert for the MIT 1.3-GHz LTS/HTS NMR Magnet.
IEEE Trans Appl Supercond. 2018 Apr;28(3). doi: 10.1109/TASC.2017.2780043. Epub 2017 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验