Suppr超能文献

面向1-GHz微线圈核磁共振的桌面式无液氦23.5-T磁体原型设计

Design of a Tabletop Liquid-Helium-Free 23.5-T Magnet Prototype towards 1-GHz Microcoil NMR.

作者信息

Park Dongkeun, Choi Yoon Hyuck, Iwasa Yukikazu

机构信息

Francis Bitter Magnet Laboratory / Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

IEEE Trans Appl Supercond. 2019 Aug;29(5). doi: 10.1109/TASC.2019.2898704. Epub 2019 Feb 11.

Abstract

We present a design study of a liquid-helium (LHe)-free 23.5-T, ϕ25-mm RT-bore REBCO magnet for high-resolution 1-GHz microcoil nuclear magnetic resonance (NMR) spectroscopy. A microcoil NMR magnet is compact and thus its cost will be less by nearly an order of magnitude than that of the standard NMR magnet, and placeable on a bench, thereby resulting in a large saving in space. In addition, LHe-free operation enables the user to be independent from a cooling source in short supply. This paper includes: 1) magnet design and conductor requirement specification; 2) conceptual design of a full-scale tabletop LHe-free 1-GHz NMR magnet; and 3) design of a 10-K operating REBCO 23.5-T magnet prototype with a ϕ20-mm cold-bore. This small-size magnet prototype will be built and tested by 2020 for validation of performance and manufacturing challenges such as splices between coils. The paper concludes with discussion of stray-field shielding methods and a screening-current-inducing field (SCF) effect.

摘要

我们展示了一种用于高分辨率1-GHz微线圈核磁共振(NMR)光谱的无液氦(LHe)23.5-T、内径25-mm室温孔径REBCO磁体的设计研究。微线圈NMR磁体结构紧凑,因此其成本将比标准NMR磁体低近一个数量级,并且可以放置在工作台上,从而大幅节省空间。此外,无液氦运行使用户无需依赖供应短缺的冷却源。本文包括:1)磁体设计和导体要求规范;2)全尺寸桌面型无液氦1-GHz NMR磁体的概念设计;3)内径20-mm冷孔的10-K运行REBCO 23.5-T磁体原型的设计。这个小尺寸磁体原型将于2020年制造并测试,以验证性能以及诸如线圈间拼接等制造方面的挑战。本文最后讨论了杂散场屏蔽方法和屏蔽电流感应场(SCF)效应。

相似文献

1
Design of a Tabletop Liquid-Helium-Free 23.5-T Magnet Prototype towards 1-GHz Microcoil NMR.
IEEE Trans Appl Supercond. 2019 Aug;29(5). doi: 10.1109/TASC.2019.2898704. Epub 2019 Feb 11.
2
First-Cut Design of a Benchtop Cryogen-Free 23.5-T/25-mm Magnet for 1-GHz Microcoil NMR.
IEEE Trans Appl Supercond. 2023 Aug;33(5). doi: 10.1109/tasc.2023.3252487. Epub 2023 Mar 3.
3
A Cryogen-Free 25-T REBCO Magnet with the Extreme-No-Insulation Winding Technique.
IEEE Trans Appl Supercond. 2022 Sep;32(6). doi: 10.1109/tasc.2022.3161401. Epub 2022 Mar 23.
4
5
Prototype REBCO Z1 and Z2 shim coils for ultra high-field.
Sci Rep. 2020 Dec 15;10(1):21946. doi: 10.1038/s41598-020-78644-0.
6
A Tabletop Persistent-Mode, Liquid Helium-Free 1.5-T MgB2 "Finger" MRI Magnet: Construction and Operation of a Prototype Magnet.
IEEE Trans Appl Supercond. 2019 Aug;29(5). doi: 10.1109/TASC.2019.2900057. Epub 2019 Feb 18.
8
Construction and Test Results of Coil 2 of a Three-Coil 800-MHz REBCO Insert for the 1.3-GHz High-Resolution NMR Magnet.
IEEE Trans Appl Supercond. 2017 Jun;27(4). doi: 10.1109/TASC.2016.2641341. Epub 2016 Dec 21.
9
On the 600 MHz HTS Insert for a 1.3 GHz NMR Magnet.
IEEE Trans Appl Supercond. 2012 Jun;22(3). doi: 10.1109/TASC.2011.2178570. Epub 2011 Dec 8.

引用本文的文献

1
Design and Construction Progress of a Cryogen-Free, Shielded 23.5-T REBCO Magnet for Benchtop 1-GHz NMR Spectroscopy.
IEEE Trans Appl Supercond. 2025 Aug;35(5). doi: 10.1109/tasc.2024.3508663. Epub 2024 Nov 28.
2
First-Cut Design of a Benchtop Cryogen-Free 23.5-T/25-mm Magnet for 1-GHz Microcoil NMR.
IEEE Trans Appl Supercond. 2023 Aug;33(5). doi: 10.1109/tasc.2023.3252487. Epub 2023 Mar 3.
3
Review of progress and challenges of key mechanical issues in high-field superconducting magnets.
Natl Sci Rev. 2023 Jan 6;10(3):nwad001. doi: 10.1093/nsr/nwad001. eCollection 2023 Mar.
4
On fault-mode phenomenon in no-insulation superconducting magnets: A preventive approach.
Appl Phys Lett. 2022 Nov 7;121(19):194101. doi: 10.1063/5.0122493. Epub 2022 Nov 10.
5
A Cryogen-Free 25-T REBCO Magnet with the Extreme-No-Insulation Winding Technique.
IEEE Trans Appl Supercond. 2022 Sep;32(6). doi: 10.1109/tasc.2022.3161401. Epub 2022 Mar 23.
6
7
Design Overview of the MIT 1.3-GHz LTS/HTS NMR Magnet with a New REBCO Insert.
IEEE Trans Appl Supercond. 2021 Aug;31(5). doi: 10.1109/tasc.2021.3064006. Epub 2021 Mar 4.
8
Prototype REBCO Z1 and Z2 shim coils for ultra high-field.
Sci Rep. 2020 Dec 15;10(1):21946. doi: 10.1038/s41598-020-78644-0.
9
MIT 1.3-GHz LTS/HTS NMR Magnet: Post Quench Analysis and New 800-MHz Insert Design.
IEEE Trans Appl Supercond. 2019 Aug;29(5). doi: 10.1109/TASC.2019.2901026. Epub 2019 Feb 22.

本文引用的文献

1
Construction and Test Results of Coils 2 and 3 of a 3-Nested-Coil 800-MHz REBCO Insert for the MIT 1.3-GHz LTS/HTS NMR Magnet.
IEEE Trans Appl Supercond. 2018 Apr;28(3). doi: 10.1109/TASC.2017.2780043. Epub 2017 Dec 4.
2
Microcoils and microsamples in solid-state NMR.
Solid State Nucl Magn Reson. 2012 Oct-Nov;47-48:1-9. doi: 10.1016/j.ssnmr.2012.09.002. Epub 2012 Oct 4.
3
Nonlinear Behavior of a Shim Coil in an LTS/HTS NMR Magnet With an HTS Insert Comprising Double-Pancake HTS-Tape Coils.
IEEE Trans Appl Supercond. 2009 Jun 1;19(3):2285-2288. doi: 10.1109/TASC.2009.2018809.
4
Microflow NMR: concepts and capabilities.
Anal Chem. 2004 May 15;76(10):2966-74. doi: 10.1021/ac035426l.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验