INSERM, IAME, UMR 1137, F-75018, Paris, France.
University Paris Diderot, Sorbonne Paris Cité, F-75018, Paris, France.
J Biopharm Stat. 2020;30(1):31-45. doi: 10.1080/10543406.2019.1607367. Epub 2019 Apr 27.
Nonlinear mixed effect models (NLMEMs) are widely used for the analysis of longitudinal data. To design these studies, optimal designs based on the expected Fisher information matrix (FIM) can be used. A method evaluating the FIM using Monte-Carlo Hamiltonian Monte-Carlo (MC-HMC) has been proposed and implemented in the R package MIXFIM using Stan. This approach, however, requires knowledge of models and parameters, which leads to locally optimal designs. The objective of this work was to extend this MC-HMC-based method to evaluate the FIM in NLMEMs accounting for uncertainty in parameters and in models. When introducing uncertainty in the population parameters, we evaluated the robust FIM as the expectation of the FIM computed by MC-HMC over the distribution of these parameters. Then, the compound D-optimality criterion (CD optimality), corresponding to a weighted product of the D-optimality criteria of several candidate models, was used to find a common CD-optimal design for the set of candidate models. Finally, a compound DE-criterion (CDE optimality), corresponding to a weighted product of the normalized determinants of the robust FIMs of all the candidate models accounting for uncertainty in parameters, was calculated to find the CDE-optimal design which was robust on both parameters and model. These methods were applied in a longitudinal Poisson count model. We assumed prior distributions on the population parameters, as well as several candidate models describing the relationship between the logarithm of the event rate parameter and the dose. We found that assuming uncertainty in parameters could lead to different optimal designs, and misspecification of models could induce designs with low efficiencies. The CD- or CDE-optimal designs therefore provided a good compromise for different candidate models. Finally, the proposed approach allows for the first time optimization of designs for repeated discrete data accounting for parameter and model uncertainties.
非线性混合效应模型(NLMEMs)广泛用于分析纵向数据。为了设计这些研究,可以使用基于预期 Fisher 信息矩阵(FIM)的最佳设计。已经提出并在使用 Stan 的 R 包 MIXFIM 中实现了一种使用蒙特卡罗汉密尔顿蒙特卡罗(MC-HMC)评估 FIM 的方法。然而,这种方法需要对模型和参数有一定的了解,这导致了局部最优设计。本工作的目的是扩展这种基于 MC-HMC 的方法,以评估考虑参数和模型不确定性的 NLMEMs 中的 FIM。当引入群体参数不确定性时,我们将稳健 FIM 评估为通过 MC-HMC 计算的 FIM 的期望,该 FIM 通过这些参数的分布进行计算。然后,复合 D-最优性准则(CD 最优性),对应于几个候选模型的 D-最优性准则的加权乘积,用于找到一组候选模型的共同 CD-最优设计。最后,计算复合 DE-准则(CDE 最优性),对应于考虑参数不确定性的所有候选模型的稳健 FIM 的标准化行列式的加权乘积,以找到稳健的参数和模型的 CDE-最优设计。这些方法应用于纵向泊松计数模型。我们对群体参数以及描述事件率参数和剂量之间关系的几个候选模型假设了先验分布。我们发现,假设参数不确定性可能会导致不同的最优设计,而模型的不正确指定可能会导致设计效率低下。因此,CD 或 CDE-最优设计为不同的候选模型提供了良好的折衷。最后,该方法首次允许针对重复离散数据的设计进行优化,同时考虑参数和模型不确定性。