Gao Jie, Liang Zhilei, Xu Zeshui
IEEE Trans Cybern. 2020 Oct;50(10):4406-4419. doi: 10.1109/TCYB.2019.2908657. Epub 2019 Apr 26.
The q -rung orthopair fuzzy set ( q -ROFS) is a powerful tool to deal with uncertainty and ambiguity in real life. The theoretical basis for processing the continuous q -rung orthopair fuzzy information is q -rung orthopair fuzzy calculus ( q -ROFC) and the main object is q -rung orthopair fuzzy functions ( q -ROFFs). Recently, the authors proposed derivatives and differentials of q -ROFFs in the framework of q -ROFC. In this paper, we aim to further study the q -rung orthopair fuzzy integral ( q -ROFI). It is the most important and fundamental part of the q -ROFC theoretical system with direct and powerful applications. Our contribution is the indefinite and definite integrals, and bridges the fuzzy calculus theoretical gap of the nonlinear q -ROFFs. In particular, we begin with the indefinite integral of q -ROFFs, which can be regarded as the anti-derivatives operations of our previous work. Some of their basic properties are discussed. Next, we give the accurate concept of definite integrals of q -ROFFs under additive operations, and obtain the explicit integral formula. Some properties of q -ROFIs, such as comparison, algebraic operations, and mean value theorem are analyzed. Finally, we generalize the q -ROFI to the case when membership and nonmembership functions are allowed to be correlated. After the theoretical results have been established, we present some numerical examples to demonstrate the rationality and effectiveness of integrating continuous q -rung orthopair fuzzy data with the q -ROFIs.
q阶正交对模糊集(q-ROFS)是处理现实生活中不确定性和模糊性的有力工具。处理连续q阶正交对模糊信息的理论基础是q阶正交对模糊微积分(q-ROFC),其主要研究对象是q阶正交对模糊函数(q-ROFFs)。最近,作者在q-ROFC框架下提出了q-ROFFs的导数和微分。在本文中,我们旨在进一步研究q阶正交对模糊积分(q-ROFI)。它是q-ROFC理论体系中最重要、最基本的部分,具有直接且强大的应用。我们的贡献在于给出了不定积分和定积分,弥合了非线性q-ROFFs的模糊微积分理论差距。具体而言,我们从q-ROFFs的不定积分入手,它可被视为我们之前工作中的反导数运算,并讨论了其一些基本性质。接下来,我们给出了加法运算下q-ROFFs定积分的精确概念,并得到了显式积分公式。分析了q-ROFIs的一些性质,如比较、代数运算和中值定理。最后,我们将q-ROFI推广到隶属度函数和非隶属度函数允许相关的情况。在建立理论结果之后,我们给出一些数值例子来证明用q-ROFIs对连续q阶正交对模糊数据进行积分的合理性和有效性。