Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.
Department of Health Sciences, Faculty of Health Sciences, University of Jaen, Jaen, Spain.
J Strength Cond Res. 2019 May;33(5):1258-1265. doi: 10.1519/JSC.0000000000003118.
Pérez-Castilla, A, Piepoli, A, Delgado-García, G, Garrido-Blanca, G, and García-Ramos, A. Reliability and concurrent validity of seven commercially available devices for the assessment of movement velocity at different intensities during the bench press. J Strength Cond Res 33(5): 1258-1265, 2019-The aim of this study was to compare the reliability and validity of 7 commercially available devices to measure movement velocity during the bench press exercise. Fourteen men completed 2 testing sessions. One-repetition maximum (1RM) in the bench press exercise was determined in the first session. The second testing session consisted of performing 3 repetitions against 5 loads (45, 55, 65, 75, and 85% of 1RM). The mean velocity was simultaneously measured using an optical motion sensing system (Trio-OptiTrack; "gold-standard") and 7 commercially available devices: 1 linear velocity transducer (T-Force), 2 linear position transducers (Chronojump and Speed4Lift), 1 camera-based optoelectronic system (Velowin), 1 smartphone application (PowerLift), and 2 inertial measurement units (IMUs) (PUSH band and Beast sensor). The devices were ranked from the most to the least reliable as follows: (a) Speed4Lift (coefficient of variation [CV] = 2.61%); (b) Velowin (CV = 3.99%), PowerLift (3.97%), Trio-OptiTrack (CV = 4.04%), T-Force (CV = 4.35%), and Chronojump (CV = 4.53%); (c) PUSH band (CV = 9.34%); and (d) Beast sensor (CV = 35.0%). A practically perfect association between the Trio-OptiTrack system and the different devices was observed (Pearson's product-moment correlation coefficient (r) range = 0.947-0.995; p < 0.001) with the only exception of the Beast sensor (r = 0.765; p < 0.001). These results suggest that linear velocity/position transducers, camera-based optoelectronic systems, and the smartphone application could be used to obtain accurate velocity measurements for restricted linear movements, whereas the IMUs used in this study were less reliable and valid.
佩雷斯-卡斯蒂利亚、皮耶波利、德尔加多-加西亚、加里多-布兰科和加西亚-拉莫斯。七种市售设备评估卧推不同强度下运动速度的可靠性和同时效度。《力量与调节研究杂志》33(5):1258-1265,2019-本研究旨在比较 7 种市售设备在评估卧推运动时的可靠性和有效性。14 名男性完成了 2 次测试。在第一次测试中确定了卧推的 1 次重复最大(1RM)。第二次测试包括使用 5 种负荷(45%、55%、65%、75%和 85%的 1RM)进行 3 次重复。使用光学运动感应系统(Trio-OptiTrack;“金标准”)和 7 种市售设备同时测量平均速度:1 个线性速度传感器(T-Force)、2 个线性位置传感器(Chronojump 和 Speed4Lift)、1 个基于摄像头的光电系统(Velowin)、1 个智能手机应用程序(PowerLift)和 2 个惯性测量单元(IMU)(PUSH band 和 Beast sensor)。根据可靠性从高到低对设备进行排名如下:(a)Speed4Lift(变异系数[CV] = 2.61%);(b)Velowin(CV = 3.99%)、PowerLift(CV = 3.97%)、Trio-OptiTrack(CV = 4.04%)、T-Force(CV = 4.35%)和 Chronojump(CV = 4.53%);(c)PUSH band(CV = 9.34%);(d)Beast sensor(CV = 35.0%)。在 Trio-OptiTrack 系统和不同设备之间观察到几乎完美的关联(皮尔逊积差相关系数(r)范围= 0.947-0.995;p < 0.001),只有 Beast sensor 例外(r = 0.765;p < 0.001)。这些结果表明,线性速度/位置传感器、基于摄像头的光电系统和智能手机应用程序可用于获得受限线性运动的精确速度测量,而本研究中使用的惯性测量单元则不太可靠和有效。