Suppr超能文献

The influence of perceptual stabilisation on perceptual grouping of temporally asynchronous stimuli.

作者信息

Park Adela S Y, Bedggood Phillip A, Metha Andrew B, Anderson Andrew J

机构信息

Department of Optometry & Vision Sciences, The University of Melbourne, Australia.

Department of Optometry & Vision Sciences, The University of Melbourne, Australia.

出版信息

Vision Res. 2019 Jul;160:1-9. doi: 10.1016/j.visres.2019.04.007. Epub 2019 May 1.

Abstract

Even during fixation, our eyes constantly make small, involuntary eye movements that cause the retinal image to be swept across our retinae. Despite this, our world appears completely stable, due to powerful perceptual stabilisation mechanisms. Whether these mechanisms are of functional consequence for visual performance remains largely unexplored, however. We directly tested this by using a perceptual grouping task, where physically aligned alternate grid elements were presented with an imperceptible temporal offset. Observers' abilities to reliably group the grid into rows (or columns) is posited to arise from the failure in compensation of retinal slip arising from the small eye movements that occur during the temporal offset, effectively introducing a spatial shift in the arrangement of grid elements. We incorporated this perceptual grouping task within the on-line jitter illusion, which temporarily disables perceptual stabilisation mechanisms through a 10 Hz flickering annulus of random noise (Vision Res 43 (2003) 957-969). Observers' abilities to correctly group the grid stimulus were measured with and without perceptual stabilisation mechanisms engaged (i.e. non-flickering vs. flickering annulus). Grouping performance was better when eye movements were perceived, suggesting that the influence of retinal slip is increased when perceptual stabilisation mechanisms are disabled. We therefore find that perceptual stabilisation can measurably influence visual function, in addition to its perceptual effects.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验