CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China.
Environ Pollut. 2019 Jul;250:728-736. doi: 10.1016/j.envpol.2019.04.083. Epub 2019 Apr 23.
Rapid development in nanotechnology and incorporation of silver nanoparticles (AgNPs) in wide range of consumer products causing the considerable release of these NPs in the environment, leading concerns for ecosystem safety and plant health. In this study, rice (Oryza sativa) was exposed to AgNPs (0, 100, 200, 500 and 1000 mg L) in biochar amended (2 %w/v) and un-amended systems. Exposure of plants to AgNPs alone reduced the root and shoot length, biomass production, chlorophyll contents, photosynthesis related physiological parameters as well as macro-and micronutrients in a dose dependent manner. However, in case of biochar amendment, physiological parameters i.e., net photosynthesis rate, maximum photosynthesis rate, CO assimilation, dark respiration and stomatal conductance reduced only 16, 6, 7, 3 and 8%, respectively under AgNPs exposure at 1000 mg L dose. Meanwhile, biochar at all exposure level of AgNPs decreased the bioaccumulation of Ag in rice root and shoot tissues, thus alleviated the phyto-toxic effects of NPs on plant growth. Moreover, results showed that biochar reduced the bioavailability of AgNPs by surface complexation, suppressing dissolution and release of toxic Ag ions in the growth medium. The presence of biochar at least decreased 2-fold tissue contents of Ag even at highest AgNPs (1000 mg L) concentration. These finding suggested that biochar derived from waste biomass resources can be used effectively to prevent the bioaccumulation and subsequent trophic level transfer of emerging Ag nano-pollutant in the environment.
纳米技术的快速发展以及将银纳米颗粒(AgNPs)纳入广泛的消费产品中,导致这些纳米颗粒大量释放到环境中,引起了对生态系统安全和植物健康的关注。在这项研究中,将水稻(Oryza sativa)暴露于生物炭添加(2%w/v)和未添加系统中的 AgNPs(0、100、200、500 和 1000mg/L)中。单独暴露于 AgNPs 会降低植物的根长和茎长、生物量生产、叶绿素含量、光合作用相关的生理参数以及宏量和微量元素,这是一种剂量依赖的方式。然而,在生物炭添加的情况下,生理参数,即净光合作用率、最大光合作用率、CO 同化、暗呼吸和气孔导度,在 AgNPs 暴露于 1000mg/L 剂量下,分别仅降低了 16%、6%、7%、3%和 8%。同时,生物炭在 AgNPs 的所有暴露水平下都降低了 Ag 在水稻根和茎叶组织中的生物积累,从而减轻了 NPs 对植物生长的毒性影响。此外,结果表明,生物炭通过表面络合作用降低了 AgNPs 的生物可利用性,抑制了有毒 Ag 离子在生长介质中的溶解和释放。即使在最高 AgNPs(1000mg/L)浓度下,生物炭的存在至少使 Ag 的组织含量降低了 2 倍。这些发现表明,来源于废生物质资源的生物炭可有效地用于防止新兴 Ag 纳米污染物在环境中的生物积累和随后的营养级转移。