Suppr超能文献

通过微粒图像测速技术研究玻璃碗式微生物反应器中的共振混合

Resonant Mixing in Glass Bowl Microbioreactor Investigated by Microparticle Image Velocimetry.

作者信息

Meinen Sven, Frey Lasse Jannis, Krull Rainer, Dietzel Andreas

机构信息

Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany.

Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany.

出版信息

Micromachines (Basel). 2019 Apr 27;10(5):284. doi: 10.3390/mi10050284.

Abstract

Microbioreactors are gaining increased interest in biopharmaceutical research. Due to their decreasing size, the parallelization of multiple reactors allows for simultaneous experiments. This enables the generation of high amounts of valuable data with minimal consumption of precious pharmaceutical substances. However, in bioreactors of all scales, fast mixing represents a crucial condition. Efficient transportation of nutrients to the cells ensures good growing conditions, homogeneous environmental conditions for all cultivated cells, and therefore reproducible and valid data. For these reasons, a new type of batch microbioreactor was developed in which any moving mixer component is rendered obsolete through the utilization of capillary surface waves for homogenization. The bioreactor was fabricated in photosensitive glass and its fluid volume of up to 8 µL was provided within a bowl-shaped volume. External mechanical actuators excited capillary surface waves and stereo microparticle image velocimetry (µPIV) was used to analyze resulting convection at different excitation conditions in varied reactor geometries. Typical vortex patterns were observed at certain resonance frequencies where best mixing conditions occurred. Based on the results, a simplified 1D model which predicts resonance frequencies was evaluated. Cultivation of Escherichia coli BL21 under various mixing conditions showed that mixing in resonance increased the biomass growth rate, led to high biomass concentrations, and provided favorable growth conditions. Since glass slides containing multiple bowl reactors can be excited as a whole, massive parallelization is foreseen.

摘要

微生物反应器在生物制药研究中越来越受到关注。由于其尺寸不断减小,多个反应器的并行化使得能够同时进行实验。这使得能够以最少的珍贵药物物质消耗生成大量有价值的数据。然而,在所有规模的生物反应器中,快速混合都是一个关键条件。将营养物质有效地输送到细胞中可确保良好的生长条件,为所有培养细胞提供均匀的环境条件,从而获得可重复且有效的数据。出于这些原因,开发了一种新型的间歇式微生物反应器,其中通过利用毛细管表面波进行均质化,任何移动的混合器组件都不再需要。该生物反应器由光敏玻璃制成,其高达8微升的流体体积容纳在碗形空间内。外部机械致动器激发毛细管表面波,并使用立体微粒图像测速技术(µPIV)来分析在不同反应器几何形状下不同激发条件下产生的对流。在出现最佳混合条件的某些共振频率下观察到了典型的涡旋模式。基于这些结果,对一个预测共振频率的简化一维模型进行了评估。在各种混合条件下培养大肠杆菌BL21表明,共振混合提高了生物量生长速率,导致高生物量浓度,并提供了有利的生长条件。由于包含多个碗形反应器的载玻片可以作为一个整体被激发,因此有望实现大规模并行化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/599b/6562785/1da7eead4732/micromachines-10-00284-g009.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验