Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1-8, Midori-ku, Yokohama, Japan.
Department of Life Science, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Japan.
Plant Cell Physiol. 2019 Jul 1;60(7):1504-1513. doi: 10.1093/pcp/pcz056.
Cyanobacteria possess a sophisticated photosynthesis-based metabolism with admirable plasticity. This plasticity is possible via the deep regulation network, the thiol-redox regulations operated by thioredoxin (hereafter, Trx). In this context, we characterized the Trx-m1-deficient mutant strain of Anabaena sp., PCC 7120 (shortly named A.7120), cultivated under nitrogen limitation. Trx-m1 appears to coordinate the nitrogen response and its absence induces large changes in the proteome. Our data clearly indicate that Trx-m1 is crucial for the diazotrophic growth of A.7120. The lack of Trx-m1 resulted in a large differentiation of heterocysts (>20% of total cells), which were barely functional probably due to a weak expression of nitrogenase. In addition, heterocysts of the mutant strain did not display the usual cellular structure of nitrogen-fixative cells. This unveiled why the mutant strain was not able to grow under nitrogen starvation.
蓝细菌具有令人钦佩的可塑性,其光合作用代谢十分复杂。这种可塑性可能是通过深度调控网络,即由硫氧还蛋白(以下简称 Trx)调控的硫醇-氧化还原调控来实现的。在此背景下,我们对固氮蓝藻鱼腥藻 PCC 7120 的 Trx-m1 缺陷突变株(简称 A.7120)进行了研究,该突变株在氮限制条件下培养。Trx-m1 似乎协调了氮响应,其缺失会引起蛋白质组的巨大变化。我们的数据清楚地表明,Trx-m1 对鱼腥藻 A.7120 的固氮生长至关重要。Trx-m1 的缺乏导致异形胞大量分化(超过总细胞的 20%),由于固氮酶的表达较弱,这些异形胞几乎没有功能。此外,突变株的异形胞没有表现出通常的固氮细胞的细胞结构。这揭示了为什么突变株在氮饥饿条件下无法生长。