Suppr超能文献

实现精准精神药理学:结合临床和遗传信息预测阿立哌唑引起的体重增加。

Getting to precision psychopharmacology: Combining clinical and genetic information to predict fat gain from aripiprazole.

机构信息

Washington University School of Medicine, Department of Psychiatry, Healthy Mind Lab, St. Louis, MO, USA.

Washington University School of Medicine, Department of Internal Medicine, St. Louis, MO, USA.

出版信息

J Psychiatr Res. 2019 Jul;114:67-74. doi: 10.1016/j.jpsychires.2019.04.017. Epub 2019 Apr 23.

Abstract

INTRODUCTION

All atypical antipsychotics are associated with some degree of weight gain. We applied a novel statistical approach to identify moderators of aripiprazole-induced fat gain using clinical and genetic data from a randomized clinical trial (RCT) of treatment resistant depression in older adults.

MATERIALS AND METHODS

Adults aged ≥60 years with non-response to a prospective trial of venlafaxine were randomized to 12 weeks of aripiprazole augmentation (n = 91) or placebo (n = 90). Dual energy x-ray absorptiometry (DEXA) measured adiposity at baseline and 12 weeks. Independent moderators of total body fat gain were used to generate two combined multiple moderators, one including clinical data alone and one including both clinical and genetic data to characterize individuals who gained fat during aripiprazole augmentation.

RESULTS

The value of the combined genetic + clinical multiple moderator (M) was 0.57 [95% CI 0.46, 0.68] (effect size: 0.57), compared to the combined clinical moderator (M) value of 0.49 [0.34, 0.63] (effect size: 0.49). Individuals who gained adiposity in this study were more likely to be female and younger in age, have lower weight, fasting glucose and lipids at baseline and positive for the HTR2C polymorphism.

DISCUSSION

These results demonstrate a combined multiple moderator approach, including both clinical and genetic moderators, can be applied to existing clinical trial data to understand adverse treatment effects. This method allowed for more specific characterization of individuals at risk for the outcome of interest. Further work is needed to identify additional genetic moderators and to validate the approach.

摘要

简介

所有非典型抗精神病药都与一定程度的体重增加有关。我们应用一种新的统计方法,利用一项针对老年难治性抑郁症的随机临床试验(RCT)的临床和遗传数据,来确定阿立哌唑引起的体重增加的调节剂。

材料与方法

对前瞻性文拉法辛试验无反应的年龄≥60 岁的成年人随机分为阿立哌唑增敏 12 周组(n=91)或安慰剂组(n=90)。双能 X 射线吸收法(DEXA)在基线和 12 周时测量体脂。独立的总脂肪增加调节剂用于生成两个联合的多调节剂,一个包括临床数据,另一个包括临床和遗传数据,以描述在阿立哌唑增敏期间增加脂肪的个体。

结果

联合遗传+临床多调节剂(M)的值为 0.57 [95%CI 0.46, 0.68](效应大小:0.57),而联合临床调节剂(M)的值为 0.49 [0.34, 0.63](效应大小:0.49)。在这项研究中增加脂肪的个体更有可能是女性和年龄较小,基线时体重、空腹血糖和血脂较低,并且 HTR2C 多态性阳性。

讨论

这些结果表明,包括临床和遗传调节剂在内的联合多调节剂方法可应用于现有临床试验数据,以了解不良治疗效果。这种方法允许更具体地描述对感兴趣结局有风险的个体。需要进一步工作来识别其他遗传调节剂并验证该方法。

相似文献

10
General Predictors and Moderators of Depression Remission: A VAST-D Report.一般抑郁缓解的预测因子和调节因素:VAST-D 报告。
Am J Psychiatry. 2019 May 1;176(5):348-357. doi: 10.1176/appi.ajp.2018.18091079. Epub 2019 Apr 5.

引用本文的文献

1
Metabolic Adverse Effects of Psychotropic Drug Therapy: A Systematic Review.精神药物治疗的代谢不良反应:一项系统综述。
Eur J Investig Health Psychol Educ. 2023 Aug 12;13(8):1505-1520. doi: 10.3390/ejihpe13080110.

本文引用的文献

3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验