Magann Alicia, Chen Linhan, Ho Tak-San, Rabitz Herschel
Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA.
Department of Physics, Princeton University, Princeton, New Jersey 08544, USA.
J Chem Phys. 2019 Apr 28;150(16):164303. doi: 10.1063/1.5091520.
We perform quantum optimal control simulations, based on the Time-Dependent Hartree (TDH) approximation, for systems of three to five dipole-dipole coupled OCS rotors. A control electric field is used to steer all of the individual rotors, arranged in chains and regular polygons in a plane, toward either identical or unique objectives. The goal is to explore the utility of the TDH approximation to model the field-induced dynamics of multiple interacting rotors in the weak dipole-dipole coupling regime. A stochastic hill climbing approach is employed to seek an optimal control field that achieves the desired objectives at a specified target time. We first show that multiple rotors in chain and polygon geometries can be identically oriented in the same direction; these cases do not significantly depend on the presence of the dipole-dipole interaction. Additionally, in particular geometrical arrangements, we demonstrate that individual rotors can be uniquely manipulated toward different objectives with the same field. Specifically, it is shown that for a three rotor chain, the two end rotors can be identically oriented in a specific direction while keeping the middle rotor in its ground state, and for an equilateral triangle, two rotors can be identically oriented in a specific direction while the third rotor is oriented in the opposite direction. These multirotor unique objective cases exploit the shape of the field in coordination with dipole-dipole coupling between the rotors. Comparisons to numerically exact calculations, utilizing the TDH-determined fields, are given for all optimal control studies involving systems of three rotors.
我们基于含时哈特里(TDH)近似,对三到五个偶极 - 偶极耦合的羰基硫化物(OCS)转子系统进行量子最优控制模拟。一个控制电场用于引导所有排列在平面内的链状和正多边形中的单个转子,使其朝着相同或独特的目标转动。目的是探索TDH近似在弱偶极 - 偶极耦合 regime 中对多个相互作用转子的场致动力学进行建模的效用。采用随机爬山法来寻找在指定目标时间实现期望目标的最优控制场。我们首先表明,链状和多边形几何结构中的多个转子可以在同一方向上相同地定向;这些情况并不显著依赖于偶极 - 偶极相互作用的存在。此外,在特定的几何排列中,我们证明了单个转子可以用相同的场朝着不同目标进行独特的操控。具体而言,结果表明对于三转子链,两个端部转子可以在特定方向上相同地定向,同时使中间转子处于基态,对于等边三角形,两个转子可以在特定方向上相同地定向,而第三个转子则在相反方向上定向。这些多转子独特目标情况利用了场的形状并结合了转子之间的偶极 - 偶极耦合。对于所有涉及三转子系统的最优控制研究,给出了与利用TDH确定的场进行的数值精确计算的比较。